Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Commun ; 11(1): 1442, 2020 03 18.
Article En | MEDLINE | ID: mdl-32188858

Current computers are limited by the von Neumann bottleneck, which constrains the throughput between the processing unit and the memory. Chemical processes have the potential to scale beyond current computing architectures as the processing unit and memory reside in the same space, performing computations through chemical reactions, yet their lack of programmability limits them. Herein, we present a programmable chemical processor comprising of a 5 by 5 array of cells filled with a switchable oscillating chemical (Belousov-Zhabotinsky) reaction. Each cell can be individually addressed in the 'on' or 'off' state, yielding more than 2.9 × 1017 chemical states which arise from the ability to detect distinct amplitudes of oscillations via image processing. By programming the array of interconnected BZ reactions we demonstrate chemically encoded and addressable memory, and we create a chemical Autoencoder for pattern recognition able to perform the equivalent of one million operations per second.

2.
Rapid Commun Mass Spectrom ; 32(24): 2122-2128, 2018 Dec 30.
Article En | MEDLINE | ID: mdl-30252964

RATIONALE: Variation in 18 O natural abundance can lead to errors in the calculation of total energy expenditure (TEE) when using the doubly labelled water (DLW) method. The use of Bayesian statistics allows a distribution to be assigned to 18 O natural abundance, thus allowing a best-fit value to be used in the calculation. The aim of this study was to calculate within-subject variation in 18 O natural abundance and apply this to our original working model for TEE calculation. METHODS: Urine samples from a cohort of 99 women, dosed with 50 g of 20% 2 H2 O, undertaking a 14-day breast milk intake protocol, were analysed for 18 O. The within-subject variance was calculated and applied to a Bayesian model for the calculation of TEE in a separate cohort of 36 women. This cohort of 36 women had taken part in a DLW study and had been dosed with 80 mg/kg body weight 2 H2 O and 150 mg/kg body weight H2 18 O. RESULTS: The average change in the δ18 O value from the 99 women was 1.14‰ (0.77) [0.99, 1.29], with the average within-subject 18 O natural abundance variance being 0.13‰2 (0.25) [0.08, 0.18]. There were no significant differences in TEE (9745 (1414), 9804 (1460) and 9789 (1455) kJ/day, non-Bayesian, Bluck Bayesian and modified Bayesian models, respectively) between methods. CONCLUSIONS: Our findings demonstrate that using a reduced natural variation in 18 O as calculated from a population does not impact significantly on the calculation of TEE in our model. It may therefore be more conservative to allow a larger variance to account for individual extremes.


Body Water/chemistry , Energy Metabolism , Adult , Bayes Theorem , Body Water/metabolism , Cohort Studies , Female , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Models, Biological , Oxygen Isotopes/analysis , Oxygen Isotopes/metabolism
3.
Proc Natl Acad Sci U S A ; 115(5): 885-890, 2018 01 30.
Article En | MEDLINE | ID: mdl-29339510

Protocell models are used to investigate how cells might have first assembled on Earth. Some, like oil-in-water droplets, can be seemingly simple models, while able to exhibit complex and unpredictable behaviors. How such simple oil-in-water systems can come together to yield complex and life-like behaviors remains a key question. Herein, we illustrate how the combination of automated experimentation and image processing, physicochemical analysis, and machine learning allows significant advances to be made in understanding the driving forces behind oil-in-water droplet behaviors. Utilizing >7,000 experiments collected using an autonomous robotic platform, we illustrate how smart automation cannot only help with exploration, optimization, and discovery of new behaviors, but can also be core to developing fundamental understanding of such systems. Using this process, we were able to relate droplet formulation to behavior via predicted physical properties, and to identify and predict more occurrences of a rare collective droplet behavior, droplet swarming. Proton NMR spectroscopic and qualitative pH methods enabled us to better understand oil dissolution, chemical change, phase transitions, and droplet and aqueous phase flows, illustrating the utility of the combination of smart-automation and traditional analytical chemistry techniques. We further extended our study for the simultaneous exploration of both the oil and aqueous phases using a robotic platform. Overall, this work shows that the combination of chemistry, robotics, and artificial intelligence enables discovery, prediction, and mechanistic understanding in ways that no one approach could achieve alone.


Artificial Cells , Artificial Intelligence , Origin of Life , Algorithms , Automation , Machine Learning , Models, Biological , Models, Chemical , Oils , Phase Transition , Robotics , Water
4.
Nano Lett ; 15(8): 4968-72, 2015 Aug 12.
Article En | MEDLINE | ID: mdl-26121487

We investigate near-degenerate four-wave mixing in graphene using femtosecond laser pulse shaping microscopy. Intense near-degenerate four-wave mixing signals on either side of the exciting laser spectrum are controlled by amplitude and phase shaping. Quantitative signal modeling for the input pulse parameters shows a spectrally flat phase response of the near-degenerate four-wave mixing due to the linear dispersion of the massless Dirac Fermions in graphene. Exploiting these properties we demonstrate that graphene is uniquely suited for the intrafocus phase characterization and compression of broadband laser pulses, circumventing disadvantages of common methods utilizing second or third harmonic light.

...