Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Molecules ; 29(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276617

ABSTRACT

Most hydrophobes easily diffuse into yeast cells, where they experience reduced evaporation and protection from oxidation, thus allowing inherently biocompatible encapsulation processes. Despite a long-standing industrial interest, the effect of parameters such as how is yeast pre-treated (extraction with ethanol, plasmolysis with hypertonic NaCl, depletion to cell walls), the polarity of the hydrophobes and the process conditions are still not fully understood. Here, we have developed thorough analytical protocols to assess how the effects of the above on S. cerevisiae's morphology, permeability, and encapsulation efficiency, using three differently polar hydrophobes (linalool, 1,6-dihydrocarvone, limonene) and three separate processes (hydrophobes as pure 'oils', water dispersions, or acetone solutions). The harsher the pre-treatment (depleted > plasmolyzed/extracted > untreated cells), the easier the diffusion into yeast became, and the lower both encapsulation efficiency and protection from evaporation, possibly due to denaturation/removal of lipid-associated (membrane) proteins. More hydrophobic terpenes performed worst in encapsulation as pure 'oils' or in water dispersion, but much less of a difference existed in acetone. This indicates the specific advantage of solvents/dispersants for 'difficult' compounds, which was confirmed by principal component analysis; furthering this concept, we have used combinations of hydrophobes (e.g., linalool and α-tocopherol), with one acting as solvent/enhancer for the other. Our results thus indicate advantages in using untreated yeast and-if necessary-processes based on solvents/secondary hydrophobes.


Subject(s)
Acetone , Acyclic Monoterpenes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Acetone/metabolism , Allergens/metabolism , Solvents , Water/metabolism
2.
Biomater Adv ; 153: 213537, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37406516

ABSTRACT

This paper is about the effects of reactive oxygen species (ROS) - and of their nanoparticle-mediated extracellular removal - in the TGF-ß1-induced differentiation of fibroblasts (human dermal fibroblasts - HDFa) to more contractile myofibroblasts, and in the maintenance of this phenotype. Here, poly(propylene sulfide) (PPS) nanoparticles have been employed on 2D and 3D in vitro models, showing extremely low toxicity and undergoing negligible internalization, thereby ensuring an extracellular-only action. Firstly, PPS nanoparticles abrogated ROS-mediated downstream molecular events such as glutathione oxidation, NF-κB activation, and heme oxidase-1 (HMOX) overexpression. Secondly, PPS nanoparticles were also capable to inhibit, prevent and reverse the TGF-ß1-induced upregulation of key biomechanical elements, such as ED-a fibronectin (EF-A FN) and alpha-smooth muscle actin (α-SMA), respectively markers of protomyofibroblastic and of myofibroblastic differentiation. We also confirmed that ROS alone are ineffective promoters of the myofibroblastic transition, although their presence contributes to its stabilization. Finally, the particles also countered TGF-ß1-induced matrix- and tissue-level phenomena, e.g., the upregulation of collagen type 1, the development of aberrant collagen type 1/3 ratios and the contracture of HDFa 3D-seeded fibrin constructs. In short, experimental data at molecular, cellular and tissue levels show a significant potential in the use of PPS nanoparticles as anti-fibrotic agents.


Subject(s)
Myofibroblasts , Transforming Growth Factor beta1 , Humans , Myofibroblasts/pathology , Transforming Growth Factor beta1/pharmacology , Reactive Oxygen Species/pharmacology , Fibroblasts , Fibrosis , Collagen Type I/pharmacology
3.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296750

ABSTRACT

Specific cell targeting to deliver nanoparticles can be achieved by tailored modifications of the material surface with chemical moieties. The selection of the cell targets can be optimized by covering the nanoparticle with molecules, the receptor expression of which is restricted to particular cell subsets. Chemokines perform their biological action through 7-TM Gi-protein-coupled receptors differently expressed in all tissues. We decorated the surface of biocompatible polymer nanoparticles with full-length CCL5, an inflammatory chemokine that attracts leukocytes by binding CCR5, which is highly expressed in blood-circulating monocytes. Our observations showed that CCL5 functionalization does not affect the nanoparticle biocompatibility. Notably, CCL5 NPs delivered to PBMCs are selectively internalized by CCR5+ monocytes but not by CCR5- lymphocytes. The efficacy of PBMC subpopulation targeting by chemokine-decorated nanoparticles establishes an easy-to-use functionalization for specific leukocyte delivery.

4.
Biomater Adv ; 133: 112661, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35067436

ABSTRACT

Tissue contractures are processes of cell-mediated contraction, irreversible in nature and typically associated with fibrotic phenomena. Contractures can be reproduced in vitro; here, we have used a medium-throughput model based on fibroblast-seeded fibrin (the 'contracture well'). Firstly, we show how profoundly these processes depend on the location of the contractile cells: when on top of the material, fibroblasts produce an interfacial contracture (analog to capsular contraction around an implant), which tries and bends the construct; when seeded inside the material, they initiate a bulk contracture (analogue to a wound bed closure) that shrinks it from within. Secondly, we demonstrate that the interfacial and bulk contractures are also mechanically and biologically different processes. Thirdly, we show the potentially predictive value of this model, since it not only recapitulates the effect of pro-fibrotic factors (TGF-ß1 for dermal (myo)fibroblasts), but can also indicate the fibrotic potential of a given cell population (here, dystrophic myoblasts more fibrotic than healthy or genetically corrected ones), which may have important implications in the identification of appropriate therapies.


Subject(s)
Contracture , Fibroblasts , Cells, Cultured , Fibrosis , Humans , Myoblasts
5.
Macromolecules ; 54(20): 9482-9495, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34720189

ABSTRACT

We describe how the organocatalytic, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-based lactide ring-opening polymerization can be effectively performed in a very polar solvent, N-methylpyrrolidone (NMP). Due to a low ceiling temperature, this "living" mechanism has been unreported to date, but we here demonstrate that through a combination of low temperature and repeated monomer additions (starve-fed process), this mechanism enables the generation of a plethora of multifunctional homo- and (stereo)block-poly(lactide)s (PLAs) with exquisite control of the molecular weight dispersity (typically D < 1.1) and topology (from linear through 4-, 6-, or 8-armed stars and up to ∼140 armed combs). They are scarcely obtainable or inaccessible through more classical synthetic methods due to the poor solubility of multifunctional initiators (polyols) in most organic solvents and monomer melts. In these precisely designed structures, branching significantly altered the nature of the materials' hydrolytic degradation, allowing them to acquire a pronounced surface character (as opposed to the bulk degradation of linear polymers). Finally, we have assessed the amenability of this method to in situ block copolymerization by using the tacticity of PLLA blocks in PLLA-b-PDLLA versus PDLLA-b-PLLA (L-LA polymerized before or after DL-LA) as a sensitive method to detect (stereochemical) defects.

6.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233846

ABSTRACT

Chemokine-induced chemotaxis mediates physiological and pathological immune cell trafficking, as well as several processes involving cell migration. Among them, the role of CXCL12/CXCR4 signaling in cancer and metastasis is well known, and CXCR4 has been often targeted with small molecule-antagonists or short CXCL12-derived peptides to limit the pathological processes of cell migration and invasion. To reduce CXCR4-mediated chemotaxis, we adopted a different approach. We manufactured poly(lactic acid-co-glycolic acid) (PLGA)/Pluronic F127 nanoparticles through microfluidics-assisted nanoprecipitation and functionalized them with streptavidin to docking a biotinylated CXCL12 to be exposed on the nanoparticle surface. Our results show that CXCL12-decorated nanoparticles are non-toxic and do not induce inflammatory cytokine release in THP-1 monocytes cultured in fetal bovine and human serum-supplemented media. The cell internalization of our chemokine receptor-targeting particles increases in accordance with CXCR4 expression in FBS/medium. We demonstrated that CXCL12-decorated nanoparticles do not induce cell migration on their own, but their pre-incubation with THP-1 significantly decreases CXCR4+-cell migration, thereby antagonizing the chemotactic action of CXCL12. The use of biodegradable and immune-compatible chemokine-mimetic nanoparticles to reduce cell migration opens the way to novel antagonists with potential application in cancer treatments and inflammation.

7.
Sci Rep ; 10(1): 14505, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879363

ABSTRACT

This study is about fine tuning the targeting capacity of peptide-decorated nanoparticles to discriminate between cells that express different integrin make-ups. Using microfluidic-assisted nanoprecipitation, we have prepared poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles with a PEGylated surface decorated with two different arginine-glycine-aspartic acid (RGD) peptides: one is cyclic (RGDFC) and has specific affinity towards αvß3 integrin heterodimers; the other is linear (RGDSP) and is reported to bind equally αvß3 and α5ß1. We have then evaluated the nanoparticle internalization in two cell lines with a markedly different integrin fingerprint: ovarian carcinoma A2780 (almost no αvß3, moderate in α5ß1) and glioma U87MG (very high in αvß3, moderate/high in α5ß1). As expected, particles with cyclic RGD were heavily internalized by U87MG (proportional to the peptide content and abrogated by anti-αvß3) but not by A2780 (same as PEGylated particles). The linear peptide, on the other hand, did not differentiate between the cell lines, and the uptake increase vs. control particles was never higher than 50%, indicating a possible low and unselective affinity for various integrins. The strong preference of U87MG for cyclic (vs. linear) peptide-decorated nanoparticles was shown in 2D culture and further demonstrated in spheroids. Our results demonstrate that targeting specific integrin make-ups is possible and may open the way to more precise treatment, but more efforts need to be devoted to a better understanding of the relation between RGD structure and their integrin-binding capacity.


Subject(s)
Integrins/metabolism , Microfluidics/methods , Nanoparticles/chemistry , Neoplasms/metabolism , Oligopeptides , Cell Line, Tumor , Drug Delivery Systems , Female , Glioma/metabolism , Humans , Linear Models , Magnetic Resonance Spectroscopy , Microscopy, Confocal , Microscopy, Fluorescence , Ovarian Neoplasms/metabolism , Poloxamer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rhodamines/chemistry
8.
Biomacromolecules ; 21(2): 305-318, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31793790

ABSTRACT

We show the first example of a synergic approach of oxidant (ROS) scavenging carrier and ROS-responsive drug release in the context of a potential therapy against osteoporosis, aiming to inhibit the differentiation of inflammatory cells into osteoclasts. In our "tandem" approach, a branched amphiphilic, PEGylated polysulfide (PPSES-PEG) was preferred over a linear analogue, because of improved homogeneity in the aggregates (spherical micelles vs mixture of wormlike and spherical), increased stability, and higher drug loading (up to ∼22 wt % of antiosteoclastic rapamycin). These effects are ascribed to the branching inhibiting crystallization in the polysulfide blocks. The ROS-scavenging micelles alone were already able to reduce osteoclastogenesis in a RAW 264.7 model, but the "drug" combination (the polymer itself + rapamycin released only under oxidation) completely abrogated the process. An important take-home message is that the synergic performance depended very strongly on the oxidant:oxidizable group molar ratio, a parameter to carefully tune in the perspective of targeting specific diseases.


Subject(s)
Drug Carriers/chemistry , Micelles , Nanomedicine/methods , Osteogenesis/drug effects , Sirolimus/pharmacokinetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Drug Carriers/pharmacokinetics , Drug Liberation , Mice , Osteoclasts/drug effects , Osteogenesis/physiology , Oxidation-Reduction , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Sulfides/chemistry , Sulfides/pharmacology
9.
Langmuir ; 35(41): 13318-13331, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31478662

ABSTRACT

Hybrids composed of liposomes (L) and metallic nanoparticles (NPs) hold great potential for imaging and drug delivery purposes. However, the efficient incorporation of metallic NPs into liposomes using conventional methodologies has so far proved to be challenging. In this study, we report the fabrication of hybrids of liposomes and hydrophobic gold NPs of size 2-4 nm (Au) using a microfluidic-assisted self-assembly process. The incorporation of increasing amounts of AuNPs into liposomes was examined using microfluidics and compared to L-AuNP hybrids prepared by the reverse-phase evaporation method. Our microfluidics strategy produced L-AuNP hybrids with a homogeneous size distribution, a smaller polydispersity index, and a threefold increase in loading efficiency when compared to those hybrids prepared using the reverse-phase method of production. Quantification of the loading efficiency was determined by ultraviolet spectroscopy, inductively coupled plasma mass spectroscopy, and centrifugal field flow fractionation, and qualitative validation was confirmed by transmission electron microscopy. The higher loading of gold NPs into the liposomes achieved using microfluidics produced a slightly thicker and more rigid bilayer as determined with small-angle neutron scattering. These observations were confirmed using fluorescent anisotropy and atomic force microscopy. Structural characterization of the liposomal-NP hybrids with cryo-electron microscopy revealed the coexistence of membrane-embedded and interdigitated NP-rich domains, suggesting AuNP incorporation through hydrophobic interactions. The microfluidic technique that we describe in this study allows for the automated production of monodisperse liposomal-NP hybrids with high loading capacity, highlighting the utility of microfluidics to improve the payload of metallic NPs within liposomes, thereby enhancing their application for imaging and drug delivery.


Subject(s)
Gold/chemistry , Lab-On-A-Chip Devices , Liposomes/chemistry , Metal Nanoparticles/chemistry , Microfluidic Analytical Techniques
10.
Sci Rep ; 9(1): 10478, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324837

ABSTRACT

The rapid vascularisation of biomaterials and artificial tissues is a key determinant for their in vivo viability and ultimately for their integration in a host; therefore promoting angiogenesis and maintaining the newly formed vascular beds has become a major goal of tissue engineering. The arteriovenous loop (AVL) has been an extensively studied platform which integrates microsurgery with cells scaffolds and growth factors to form neotissues. Most AVL studies to date are limited to larger animal models, which are surgically easier to perform, but have inherent limits for the understanding and interrogation of the underlying in vivo mechanisms due the paucity of transgenic models. Here, we demonstrate for the first time in a mouse model the utility of the AVL in the de novo production of vascularized tissue. We also present the combined use of the model with 3D printed chambers, which allow us to dictate size and shape of the tissues formed. This novel platform will allow for an understanding of the fundamental mechanisms involved in tissue generation de novo.


Subject(s)
Neovascularization, Physiologic , Tissue Engineering/methods , Animals , Arteries/growth & development , Cell Proliferation , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Regenerative Medicine/methods , Veins/growth & development
11.
ACS Appl Mater Interfaces ; 11(30): 26607-26618, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31282644

ABSTRACT

This study is about (1) nanomanufacturing (focusing on microfluidic-assisted nanoprecipitation), (2) advanced colloid characterization (focusing on field flow fractionation), and (3) the possible restructuring of surface disulfides. Disulfides are dynamic and exchangeable groups, and here we specifically focus, first, on their use to introduce biofunctional groups and, second, on their re-organization, which may lead to variable surface chemistries and uncontrolled cell interactions. The particles were obtained via microfluidic-assisted (flow-focused) nanoprecipitation of poly(ethylene glycol)-b-poly(ε-caprolactone) bearing or not a 2-pyridyl disulfide (PDS) terminal group, which quantitatively exchanges with thiols in solution. In this study, we have paid specific attention to size characterization, thereby also demonstrating the limitations of dynamic light scattering (DLS) as a stand-alone technique. By using asymmetric flow field flow fractionation coupled with DLS, static light scattering (SLS), and refractive index detectors, we show that relatively small amounts of >100 nm aggregates (cryogenic transmission electron microscopy and SLS/DLS comparison suggesting them to be wormlike micelles) dominated the stand-alone DLS results, whereas the "real" size distributions picked <50 nm. Our key result is that the kinetics of the conjugation based on PDS-thiol exchange was controlled by the thiol pKa, and this also determined the rate of the exchange between the resulting disulfides and glutathione (GSH). In particular, more acidic thiols (e.g., peptides, where a cysteine is flanked by cationic residues) react faster with PDS, but their disulfides hardly exchange with GSH; the reverse applies to thiols with a higher pKa. Disulfides that resist against restructuring via thiol-disulfide exchange allow for a stable bioconjugation, although they may be bad news for payload release under reducing conditions. However, experiments of both thiol release and nanoparticles uptake in cells (HCT116) show that also the disulfides formed from less-acidic and, therefore, less-reactive, and more exchangeable thiols were stable for at least a few hours even in a GSH-rich (10 mM) environment; this suggests a sufficiently long stability of surface groups to achieve, for example, a cell-targeting effect.


Subject(s)
Disulfides/chemistry , Microfluidics , Nanoparticles/chemistry , Cysteine/chemistry , Disulfides/chemical synthesis , Ethylene Glycols/chemistry , Ethylene Glycols/pharmacology , Glutathione/chemistry , HCT116 Cells , Humans , Kinetics , Nanoparticles/administration & dosage , Peptides/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Surface Properties
12.
RSC Adv ; 9(63): 37061-37066, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-35539078

ABSTRACT

We report a novel, inexpensive and green method for preparing aqueous dispersions of various biofunctional transition-metal dichalcogenides (MoS2, WS2, TiS2 and MoSe2) and their related heterostructures directly via ultrasonic exfoliation mediated by the presence of phospholipids. The dispersions predominantly consist of few-layer flakes coated with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), as confirmed by Raman, photoluminescence and X-ray photoelectron spectroscopies. The phospholipid coating renders the flakes biofunctional, which coupled with the unique properties of transition-metal dichalcogenides and their heterostructures, suggests this method will have great potential in biological applications.

13.
Beilstein J Nanotechnol ; 10: 2594-2608, 2019.
Article in English | MEDLINE | ID: mdl-31976191

ABSTRACT

This study is about linking preparative processes of nanoparticles with the morphology of the nanoparticles and with their efficiency in delivering payloads intracellularly. The nanoparticles are composed of hyaluronic acid (HA) and chitosan; the former can address a nanoparticle to cell surface receptors such as CD44, the second allows both for entrapment of nucleic acids and for an endosomolytic activity that facilitates their liberation in the cytoplasm. Here, we have systematically compared nanoparticles prepared either A) through a two-step process based on intermediate (template) particles produced via ionotropic gelation of chitosan with triphosphate (TPP), which are then incubated with HA, or B) through direct polyelectrolyte complexation of chitosan and HA. Here we demonstrate that HA is capable to quantitatively replace TPP in the template process and significant aggregation takes place during the TPP-HA exchange. The templated chitosan/HA nanoparticles therefore have a mildly larger size (measured by dynamic light scattering alone or by field flow fractionation coupled to static or dynamic light scattering), and above all a higher aspect ratio (R g/R H) and a lower fractal dimension. We then compared the kinetics of uptake and the (antiluciferase) siRNA delivery performance in murine RAW 264.7 macrophages and in human HCT-116 colorectal tumor cells. The preparative method (and therefore the internal particle morphology) had little effect on the uptake kinetics and no statistically relevant influence on silencing (templated particles often showing a lower silencing). Cell-specific factors, on the contrary, overwhelmingly determined the efficacy of the carriers, with, e.g., those containing low-MW chitosan performing better in macrophages and those with high-MW chitosan in HCT-116.

14.
Int J Pharm ; 548(1): 530-539, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30009983

ABSTRACT

In this work we evaluate the effect of polymer composition and architecture of (PEGylated) polyesters on particle size and paclitaxel (PTX) loading for particles manufactured via microfluidic-assisted, continuous-flow nanoprecipitation using two microfluidic chips with different geometries and mixing principles. We have prepared poly (d,l-lactic acid-co-caprolactone) (PLCL) from ring-opening polymerization (ROP) of LA and CL mixtures and different (macro) initiators (namely, 1-dodecanol, a MeO-PEG-OH, and a 4-armed star PEG-OH), rendering polyesters that vary in monomer composition (i.e. LA/CL ratios) and architecture (i.e. linear vs 4-armed star). Continuous-flow nanoprecipitation was assayed using two microfluidic chips: a cross-flow chip with a X-shaped mixing junction (2D laminar flow focusing) and a micromixer featuring a Y-shaped mixing junction and a split and recombine path (2D laminar flow focusing convinced with stream lamination for faster mixing). Nanoparticle formulations were produced with Z-average sizes in the range of 30-160 nm, although size selectivity could be seen for different polymer/chip combinations; for instance, smaller particles were obtained with Y-shaped micromixer (30-120 nm), specially for the PEGylated polyesters (30-50 nm), whereas the cross-flow chip systematically produced larger particles (80-160 nm). Loading of the anti-cancer drug paclitaxel (PTX) was also heavily influenced not only by the nature of the polyester, but also by the geometry of the microfluidic chip; higher drug loadings were obtained with the cross-flow reactor and the star block copolymers. Finally, decreasing the LA/CL ratio generally had a positive effect on drug loading.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Microfluidics , Nanoparticles/chemistry , Paclitaxel/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Chemical Precipitation , Drug Compounding/methods , Particle Size
15.
Bioconjug Chem ; 29(8): 2550-2560, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29975838

ABSTRACT

We present a method for tyrosine-selective and reversible bioconjugation; tyrosines are enzymatically converted into catechols and in situ "clicked" onto boronic acids. Importantly, our process selectively produces catechols and avoids quinones, thereby improving the control over the chemical identity of the products. We have conjugated boronic acid-containing hyaluronic acid (HyA) to peptides bearing tyrosines in variable number and position; the use of tagging peptides for the provision of well exposed tyrosine residues-in our case the hemagglutinin-derived HA-tag-makes our approach applicable to virtually any protein; we have demonstrated this concept by conjugating HA-tagged ovalbumin to HyA, thereby also showing the feasibility of producing chimeric proteoglycans. A caveat of this appproach is that, although the formation of boronic esters does not affect the biological recognition of substrates (ovalbumin and HyA), the introduction of catechols may alter some of their biological properties: for example, only after tyrosinase treatment ovalbumin directly induced dendritic cell maturation, either alone or as a HyA conjugate.


Subject(s)
Macromolecular Substances/chemistry , Monophenol Monooxygenase/chemistry , Boronic Acids/chemistry , Catechols/chemistry , Feasibility Studies , Hyaluronic Acid/chemistry , Peptides/chemistry , Quinones/chemistry
16.
APL Bioeng ; 2(3): 036102, 2018 Sep.
Article in English | MEDLINE | ID: mdl-31069320

ABSTRACT

The invasion of a matrix by migrating cells is a key step in its remodelling. At least in 2D migration models, cells tend to localize in stiffer areas (durotaxis). Here, we show that mechanical properties affect differently the 3D migration rate: non-proteolytic 3D cell migration is facilitated in softer matrices. In these gels, the modulus was varied by introducing defects in fibres, leaving largely intact the nanostructure. The matrices derive from fibrin via functionalization with a bioinert polymer [poly(ethylene glycol), PEG] through an affinity mechanism identical to that presiding to fibrin own self-assembly. Peptidic end groups on PEG were used to bind fibrinogen globular D regions [GPRP (glycine-proline-arginine-proline) for a holes, GHRP (glycine-histidine-arginine-proline) for b holes; Kd evaluated via isothermal titration calorimetry or fluorescence anisotropy]. In a dose-dependent manner, both PEGylated peptides decreased gel stiffness, but most other properties at a macroscopic [e.g., overall elastic character, strain hardening, and high (>0.5) Poisson ratio] or nano/micro level (fibre dimension and pore size) were largely unaffected, suggesting that the softening effect was due to the introduction of defects within fibres, rather than to differences in the network architecture. In these matrices, the key determinant of fibroblast migration was found to be the elastic modulus, rather than the identity or the dose of the PEGylated peptide; softer materials allowed a faster invasion, even if this meant a higher content of non-adhesive PEG. This does not conflict with fibroblast durotaxis (where stiffness controls accumulation but not necessarily the speed of migration) and indicates a way to fine tune the speed of cell colonization.

17.
RSC Adv ; 8(34): 19220-19225, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539657

ABSTRACT

This paper deals with simple, inexpensive and 'green' methods of production for graphene in colloidal dispersion. Herein, we report on such a method by preparing aqueous graphene dispersions via ultrasonic exfoliation in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The product predominantly consists of few-layer graphene flakes coated by DOPC with a lateral size of a few tens to hundreds of nm, as confirmed by Raman and X-ray photoelectron spectroscopies, thermogravimetric analysis (TGA), dynamic light scattering (DLS) and atomic force microscopy (AFM). The novelty of this method lies in its dependence on a typical soft matter property: the fluidity of the hydrophobic chains. Stiffer phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, which possesses two palmitoyl chains) or 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC, one palmitoyl, one oleyl chain) are ineffective at dispersing graphene; however, in the presence of cholesterol these phospholipids also become effective mediators. The phospholipid coating renders the flakes compatible with biological environments.

18.
Int J Pharm ; 534(1-2): 97-107, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29017804

ABSTRACT

We have employed microfluidics (cross-shaped chip) for the preparation of drug-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles. The polymer precipitates from an acetone solution upon its controlled laminar mixing (flow focusing) with an aqueous solution of a surfactant, allowing for an operator-independent, up-scalable and reproducible preparative process of nanoformulations. Firstly, using PEGylated surfactants we have compared batch and microfluidic processes, and showed the superior reproducibility of the latter and its strong dependency on the acetone/water ratio (flow rate ratio). We have then focused on the issue of purification from free surfactant, and employed advanced characterization techniques such as flow-through dynamic light scattering as the in-line quality control technique, and field flow fractionation (FFF) with dynamic and static light scattering detection, which allowed the detection of surfactant micelles in mixture with nanoparticles (hardly possible with stand-alone dynamic light scattering). Finally, we have shown that the choice of polymer and surfactant affects the release behaviour of a model drug (paclitaxel), with high molecular weight PLGA (RG756) and low molecular weight surfactant (tocopheryl poly(ethylene glycol) 1000 succinate, TPGS) apparently showing higher burst and accelerated release.


Subject(s)
Nanoparticles/chemistry , Drug Carriers/chemistry , HCT116 Cells , Humans , Lactic Acid/chemistry , Microfluidics/methods , Nanotechnology/methods , Paclitaxel/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Reproducibility of Results , Structure-Activity Relationship , Surface-Active Agents/chemistry
19.
Biomacromolecules ; 18(3): 728-739, 2017 03 13.
Article in English | MEDLINE | ID: mdl-27930884

ABSTRACT

This study focuses on the comparative evaluation of star (branched) and linear poly(l,d-lactic acid) (PDLLA) as degradable materials employed in controlled release. The polymers were prepared via ring-opening polymerization initiated by decanol (linear), pentaerythritol (4-armed star) and dipentaerythritol (6-armed star), and processed both in the form of films and nanoparticles. Independent of the length or number of their arms, star polymers degrade slower than linear polymers, possibly through a surface (vs bulk) mechanism. Further, the release of a model drug (atorvastatin) followed zero-order-like kinetics for the branched polymers, and first-order kinetics for linear PDLLA. Using NHOst osteoblastic cells, both linear and star polymers were devoid of any significant toxicity and released atorvastatin in a bioavailable form; cell adhesion was considerably lower on star polymer films, and the slower release from their nanoparticles appeared to be beneficial to avoid atorvastatin overdosing.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Polyesters/chemistry , Atorvastatin/pharmacology , Biological Availability , Cells, Cultured , Chemical Phenomena , Drug Liberation , Humans , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Molecular Weight , Osteoblasts/drug effects , Spectroscopy, Fourier Transform Infrared
20.
Macromol Rapid Commun ; 37(23): 1918-1925, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27676076

ABSTRACT

Families of amphiphilic oxidation-responsive polymers (poly(ethylene glycol)-polysulfides) with different architectures (linear, 4, 6, and 8-armed stars and 10, 15, and 20-armed combs) and compositions (variable ethylene sulfide/propylene sulfide ratio) are prepared. In water, all the polymers assemble in spherical micelles, with critical micellar concentrations <0.01 mg mL-1 for all the branched polymers. Triple-detection gel permeation chromatography (GPC) and asymmetric field flow fractionation (AFFF) with dynamic and static light scattering detection, respectively, show an increasing compaction of the polymeric coil and a strong reduction of the aggregation number with increasing degree of branching. The key finding of this study is that the kinetics of the oxidative response sharply depend on the branching; in particular, it is highlighted that the degree of branching influences the lag time before a response can be observed rather than the speed of the response itself, a phenomenon that is attributed to a branching-dependent solubility of the oxidant in the polysulfide matrix.


Subject(s)
Polymers/chemistry , Kinetics , Oxidation-Reduction , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...