Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Cell Mol Immunol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937625

ABSTRACT

CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.

2.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895447

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematological malignancies but has been clinically less effective in solid tumors. Engineering macrophages with CARs has emerged as a promising approach to overcome some of the challenges faced by CAR-T cells due to the macrophage's ability to easily infiltrate tumors, phagocytose their targets, and reprogram the immune response. We engineered CAR-macrophages (CAR-Ms) to target chondroitin sulfate proteoglycan 4 (CSPG4), an antigen expressed in melanoma, and several other solid tumors. CSPG4-targeting CAR-Ms exhibited specific phagocytosis of CSPG4-expressing melanoma cells. Combining CSPG4-targeting CAR-Ms with CD47 blocking antibodies synergistically enhanced CAR-M-mediated phagocytosis and effectively inhibited melanoma spheroid growth in 3D. Furthermore, CSPG4-targeting CAR-Ms inhibited melanoma tumor growth in mouse models. These results suggest that CSPG4-targeting CAR-M immunotherapy is a promising solid tumor immunotherapy approach for treating melanoma. STATEMENT OF SIGNIFICANCE: We engineered macrophages with CARs as an alternative approach for solid tumor treatment. CAR-macrophages (CAR-Ms) targeting CSPG4, an antigen expressed in melanoma and other solid tumors, phagocytosed melanoma cells and inhibited melanoma growth in vivo . Thus, CSPG4-targeting CAR-Ms may be a promising strategy to treat patients with CSPG4-expressing tumors.

4.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645165

ABSTRACT

Interleukin-15 (IL15) promotes the survival of T lymphocytes and enhances the antitumor properties of CAR T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy1-4. Glypican-3 (GPC3) is expressed in a group of solid cancers5-10, and here we report the first evaluation in humans of the effects of IL15 co-expression on GPC3-CAR T cells. Cohort 1 patients (NCT02905188/NCT02932956) received GPC3-CAR T cells, which were safe but produced no objective antitumor responses and reached peak expansion at two weeks. Cohort 2 patients (NCT05103631/NCT04377932) received GPC3-CAR T cells that co-expressed IL15 (15.CAR), which mediated significantly increased cell expansion and induced a disease control rate of 66% and antitumor response rate of 33%. Infusion of 15.CAR T cells was associated with increased incidence of cytokine release syndrome, which was rapidly ameliorated by activation of the inducible caspase 9 safety switch. Compared to non-responders, tumor-infiltrating 15.CAR T cells from responders showed repression of SWI/SNF epigenetic regulators and upregulation of FOS and JUN family members as well as genes related to type I interferon signaling. Collectively, these results demonstrate that IL15 increases the expansion, intratumoral survival, and antitumor activity of GPC3-CAR T cells in patients.

5.
Nat Cancer ; 5(6): 880-894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658775

ABSTRACT

In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .


Subject(s)
Immunotherapy, Adoptive , Receptor, ErbB-2 , Receptors, Chimeric Antigen , Sarcoma , Humans , Sarcoma/therapy , Sarcoma/immunology , Middle Aged , Female , Male , Adult , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Aged , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Lymphocyte Depletion/methods , Prospective Studies , Vidarabine/analogs & derivatives , Vidarabine/administration & dosage , Vidarabine/therapeutic use , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Treatment Outcome
6.
Biomaterials ; 308: 122580, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640784

ABSTRACT

Chimeric Antigen Receptor (CAR) T cell therapy has produced revolutionary success in hematological cancers such as leukemia and lymphoma. Nonetheless, its translation to solid tumors faces challenges due to manufacturing complexities, short-lived in vivo persistence, and transient therapeutic impact. We introduce 'Drydux' - an innovative macroporous biomaterial scaffold designed for rapid, efficient in-situ generation of tumor-specific CAR T cells. Drydux expedites CAR T cell preparation with a mere three-day turnaround from patient blood collection, presenting a cost-effective, streamlined alternative to conventional methodologies. Notably, Drydux-enabled CAR T cells provide prolonged in vivo release, functionality, and enhanced persistence exceeding 150 days, with cells transitioning to memory phenotypes. Unlike conventional CAR T cell therapy, which offered only temporary tumor control, equivalent Drydux cell doses induced lasting tumor remission in various animal tumor models, including systemic lymphoma, peritoneal ovarian cancer, metastatic lung cancer, and orthotopic pancreatic cancer. Drydux's approach holds promise in revolutionizing solid tumor CAR T cell therapy by delivering durable, rapid, and cost-effective treatments and broadening patient accessibility to this groundbreaking therapy.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Humans , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Mice , T-Lymphocytes/immunology , Neoplasms/therapy , Neoplasms/immunology , Female , Cell Line, Tumor
7.
Lancet Haematol ; 11(5): e358-e367, 2024 May.
Article in English | MEDLINE | ID: mdl-38555923

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting CD30 are safe and have promising activity when preceded by lymphodepleting chemotherapy. We aimed to determine the safety of anti-CD30 CAR T cells as consolidation after autologous haematopoietic stem-cell transplantation (HSCT) in patients with CD30+ lymphoma at high risk of relapse. METHODS: This phase 1 dose-escalation study was performed at two sites in the USA. Patients aged 3 years and older, with classical Hodgkin lymphoma or non-Hodgkin lymphoma with CD30+ disease documented by immunohistochemistry, and a Karnofsky performance score of more than 60% planned for autologous HSCT were eligible if they were considered high risk for relapse as defined by primary refractory disease or relapse within 12 months of initial therapy or extranodal involvement at the start of pre-transplantation salvage therapy. Patients received a single infusion of CAR T cells (2 × 107 CAR T cells per m2, 1 × 108 CAR T cells per m2, or 2 × 108 CAR T cells per m2) as consolidation after trilineage haematopoietic engraftment (defined as absolute neutrophil count ≥500 cells per µL for 3 days, platelet count ≥25 × 109 platelets per L without transfusion for 5 days, and haemoglobin ≥8 g/dL without transfusion for 5 days) following carmustine, etoposide, cytarabine, and melphalan (BEAM) and HSCT. The primary endpoint was the determination of the maximum tolerated dose, which was based on the rate of dose-limiting toxicity in patients who received CAR T-cell infusion. This study is registered with ClinicalTrials.gov (NCT02663297) and enrolment is complete. FINDINGS: Between June 7, 2016, and Nov 30, 2020, 21 patients were enrolled and 18 patients (11 with Hodgkin lymphoma, six with T-cell lymphoma, one with grey zone lymphoma) were infused with anti-CD30 CAR T cells at a median of 22 days (range 16-44) after autologous HSCT. There were no dose-limiting toxicities observed, so the highest dose tested, 2 × 108 CAR T cells per m2, was determined to be the maximum tolerated dose. One patient had grade 1 cytokine release syndrome. The most common grade 3-4 adverse events were lymphopenia (two [11%] of 18) and leukopenia (two [11%] of 18). There were no treatment-related deaths. Two patients developed secondary malignancies approximately 2 years and 2·5 years following treatment (one stage 4 non-small cell lung cancer and one testicular cancer), but these were judged unrelated to treatment. At a median follow-up of 48·2 months (IQR 27·5-60·7) post-infusion, the median progression-free survival for all treated patients (n=18) was 32·3 months (95% CI 4·6 months to not estimable) and the median progression-free survival for treated patients with Hodgkin lymphoma (n=11) has not been reached. The median overall survival for all treated patients has not been reached. INTERPRETATION: Anti-CD30 CAR T-cell infusion as consolidation after BEAM and autologous HSCT is safe, with low rates of toxicity and encouraging preliminary activity in patients with Hodgkin lymphoma at high risk of relapse, highlighting the need for larger studies to confirm these findings. FUNDING: National Heart Lung and Blood Institute, University Cancer Research Fund at the Lineberger Comprehensive Cancer Center.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Ki-1 Antigen , Transplantation, Autologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Middle Aged , Adult , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Aged , Adolescent , Hodgkin Disease/therapy , Hodgkin Disease/immunology , Young Adult , Child , Receptors, Chimeric Antigen/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melphalan/therapeutic use , Melphalan/administration & dosage , Lymphoma, Non-Hodgkin/therapy , Lymphoma, Non-Hodgkin/immunology , Carmustine/therapeutic use , Carmustine/administration & dosage , Etoposide/therapeutic use , Etoposide/administration & dosage , Child, Preschool , Cytarabine/therapeutic use , Cytarabine/administration & dosage
8.
Nat Mater ; 23(6): 844-853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38448658

ABSTRACT

Lymph nodes are crucial organs of the adaptive immune system, orchestrating T cell priming, activation and tolerance. T cell activity and function are highly regulated by lymph nodes, which have a unique structure harbouring distinct cells that work together to detect and respond to pathogen-derived antigens. Here we show that implanted patient-derived freeze-dried lymph nodes loaded with chimeric antigen receptor T cells improve delivery to solid tumours and inhibit tumour recurrence after surgery. Chimeric antigen receptor T cells can be effectively loaded into lyophilized lymph nodes, whose unaltered meshwork and cytokine and chemokine contents promote chimeric antigen receptor T cell viability and activation. In mouse models of cell-line-derived human cervical cancer and patient-derived pancreatic cancer, delivery of chimeric antigen receptor T cells targeting mesothelin via the freeze-dried lymph nodes is more effective in preventing tumour recurrence when compared to hydrogels containing T-cell-supporting cytokines. This tissue-mediated cell delivery strategy holds promise for controlled release of various cells and therapeutics with long-term activity and augmented function.


Subject(s)
Freeze Drying , Lymph Nodes , Mesothelin , Receptors, Chimeric Antigen , Animals , Humans , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Lymph Nodes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Cell Line, Tumor , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology
9.
Nat Commun ; 15(1): 89, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167707

ABSTRACT

Human natural killer T cells (NKTs) are innate-like T lymphocytes increasingly used for cancer immunotherapy. Here we show that human NKTs expressing the pro-inflammatory cytokine interleukin-12 (IL-12) undergo extensive and sustained molecular and functional reprogramming. Specifically, IL-12 instructs and maintains a Th1-polarization program in NKTs in vivo without causing their functional exhaustion. Furthermore, using CD62L as a marker of memory cells in human NKTs, we observe that IL-12 maintains long-term CD62L-expressing memory NKTs in vivo. Notably, IL-12 initiates a de novo programming of memory NKTs in CD62L-negative NKTs indicating that human NKTs circulating in the peripheral blood possess an intrinsic differentiation hierarchy, and that IL-12 plays a role in promoting their differentiation to long-lived Th1-polarized memory cells. Human NKTs engineered to co-express a Chimeric Antigen Receptor (CAR) coupled with the expression of IL-12 show enhanced antitumor activity in leukemia and neuroblastoma tumor models, persist long-term in vivo and conserve the molecular signature driven by the IL-12 expression. Thus IL-12 reveals an intrinsic plasticity of peripheral human NKTs that may play a crucial role in the development of cell therapeutics.


Subject(s)
Natural Killer T-Cells , Receptors, Chimeric Antigen , Humans , Interleukin-12/genetics , Cytotoxicity, Immunologic , Lymphocyte Activation
13.
Cancer Cell ; 41(12): 2100-2116.e10, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38039964

ABSTRACT

Selection of the best tumor antigen is critical for the therapeutic success of chimeric antigen receptor (CAR) T cells in hematologic malignancies and solid tumors. The anaplastic lymphoma kinase (ALK) receptor is expressed by most neuroblastomas while virtually absent in most normal tissues. ALK is an oncogenic driver in neuroblastoma and ALK inhibitors show promising clinical activity. Here, we describe the development of ALK.CAR-T cells that show potent efficacy in monotherapy against neuroblastoma with high ALK expression without toxicity. For neuroblastoma with low ALK expression, combination with ALK inhibitors specifically potentiates ALK.CAR-T cells but not GD2.CAR-T cells. Mechanistically, ALK inhibitors impair tumor growth and upregulate the expression of ALK, thereby facilitating the activity of ALK.CAR-T cells against neuroblastoma. Thus, while neither ALK inhibitors nor ALK.CAR-T cells will likely be sufficient as monotherapy in neuroblastoma with low ALK density, their combination specifically enhances therapeutic efficacy.


Subject(s)
Neuroblastoma , Humans , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antigens, Neoplasm , T-Lymphocytes , Cell Line, Tumor
14.
J Exp Clin Cancer Res ; 42(1): 310, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993874

ABSTRACT

BACKGROUND: Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40-60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. METHODS: In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. RESULTS: We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. CONCLUSIONS: In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Humans , Animals , Mice , Cytokines , Receptors, Chimeric Antigen/genetics , Immune Checkpoint Inhibitors , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local , Melanoma/genetics , Melanoma/therapy , Immunotherapy , Lymphocytes/pathology , Membrane Proteins , Chondroitin Sulfate Proteoglycans
15.
Bioeng Transl Med ; 8(6): e10538, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023712

ABSTRACT

Chimeric antigen receptor (CAR)-modified T-cell therapy has shown enormous clinical promise against blood cancers, yet efficacy against solid tumors remains a challenge. Here, we investigated the potential of a new combination cell therapy, where tumor-homing induced neural stem cells (iNSCs) are used to enhance CAR-T-cell therapy and achieve efficacious suppression of brain tumors. Using in vitro and in vivo migration assays, we found iNSC-secreted RANTES/IL-15 increased CAR-T-cell migration sixfold and expansion threefold, resulting in greater antitumor activity in a glioblastoma (GBM) tumor model. Furthermore, multimodal imaging showed iNSC delivery of RANTES/IL-15 in combination with intravenous administration of CAR-T cells reduced established orthotopic GBM xenografts 2538-fold within the first week, followed by durable tumor remission through 60 days post-treatment. By contrast, CAR-T-cell therapy alone only partially controlled tumor growth, with a median survival of only 19 days. Together, these studies demonstrate the potential of combined cell therapy platforms to improve the efficacy of CAR-T-cell therapy for brain tumors.

16.
Nat Commun ; 14(1): 5727, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37714830

ABSTRACT

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.


Subject(s)
Breast Neoplasms , Receptors, Chimeric Antigen , Humans , Female , Animals , Mice , Leukocytes, Mononuclear , Tumor Microenvironment , Breast Neoplasms/therapy , Disease Models, Animal , Immunosuppressive Agents , T-Lymphocytes
17.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37527906

ABSTRACT

Chimeric antigen receptor (CAR)-T cells targeting CD30 have demonstrated high response rates with durable remissions observed in a subset of patients with relapsed/refractory CD30+ hematologic malignancies, particularly classical Hodgkin lymphoma. This therapy has low rates of toxicity including cytokine release syndrome with no neurotoxicity observed in our phase 2 study. We collected patient-reported outcomes (PROs) on patients treated with CD30 directed CAR-T cells to evaluate the impact of this therapy on their symptom experience. We collected PROs including PROMIS (Patient-Reported Outcomes Measurement Information System) Global Health and Physical Function questionnaires and selected symptom questions from the NCI PRO-CTCAE in patients enrolled on our clinical trial of CD30-directed CAR-T cells at procurement, at time of CAR-T cell infusion, and at various time points post treatment. We compared PROMIS scores and overall symptom burden between pre-procurement, time of infusion, and at 4 weeks post infusion. At least one PRO measurement during the study period was found in 23 out of the 28 enrolled patients. Patient overall symptom burden, global health and mental health, and physical function were at or above baseline levels at 4 weeks post CAR-T cell infusion. In addition, PROMIS scores for patients who participated in the clinical trial were similar to the average healthy population. CD30 CAR-T cell therapy has a favorable toxicity profile with patient physical function and symptom burden recovering to at least their baseline pretreatment health by 1 month post infusion. Trial registration number: NCT02690545.


Subject(s)
Hematologic Neoplasms , Lymphoma , Humans , Receptors, Antigen, T-Cell , Neoplasm Recurrence, Local/drug therapy , Lymphoma/drug therapy , Hematologic Neoplasms/drug therapy , Patient Reported Outcome Measures , T-Lymphocytes
18.
Nat Med ; 29(6): 1379-1388, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188782

ABSTRACT

Vα24-invariant natural killer T cells (NKTs) have anti-tumor properties that can be enhanced by chimeric antigen receptors (CARs). Here we report updated interim results from the first-in-human phase 1 evaluation of autologous NKTs co-expressing a GD2-specific CAR with interleukin 15 (IL15) (GD2-CAR.15) in 12 children with neuroblastoma (NB). The primary objectives were safety and determination of maximum tolerated dose (MTD). The anti-tumor activity of GD2-CAR.15 NKTs was assessed as a secondary objective. Immune response evaluation was an additional objective. No dose-limiting toxicities occurred; one patient experienced grade 2 cytokine release syndrome that was resolved by tocilizumab. The MTD was not reached. The objective response rate was 25% (3/12), including two partial responses and one complete response. The frequency of CD62L+NKTs in products correlated with CAR-NKT expansion in patients and was higher in responders (n = 5; objective response or stable disease with reduction in tumor burden) than non-responders (n = 7). BTG1 (BTG anti-proliferation factor 1) expression was upregulated in peripheral GD2-CAR.15 NKTs and is a key driver of hyporesponsiveness in exhausted NKT and T cells. GD2-CAR.15 NKTs with BTG1 knockdown eliminated metastatic NB in a mouse model. We conclude that GD2-CAR.15 NKTs are safe and can mediate objective responses in patients with NB. Additionally, their anti-tumor activity may be enhanced by targeting BTG1. ClinicalTrials.gov registration: NCT03294954 .


Subject(s)
Natural Killer T-Cells , Neuroblastoma , Receptors, Chimeric Antigen , Child , Animals , Mice , Humans , Cytotoxicity, Immunologic , Receptors, Chimeric Antigen/genetics , Neuroblastoma/therapy , Immunotherapy, Adoptive/methods
19.
Neuro Oncol ; 25(9): 1551-1562, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37179459

ABSTRACT

Glioblastoma (GBM) is a highly aggressive tumor with a devastating impact on quality-of-life and abysmal survivorship. Patients have very limited effective treatment options. The successes of targeted small molecule drugs and immune checkpoint inhibitors seen in various solid tumors have not translated to GBM, despite significant advances in our understanding of its molecular, immune, and microenvironment landscapes. These discoveries, however, have unveiled GBM's incredible heterogeneity and its role in treatment failure and survival. Novel cellular therapy technologies are finding successes in oncology and harbor characteristics that make them uniquely suited to overcome challenges posed by GBM, such as increased resistance to tumor heterogeneity, modularity, localized delivery, and safety. Considering these advantages, we compiled this review article on cellular therapies for GBM, focusing on cellular immunotherapies and stem cell-based therapies, to evaluate their utility. We categorize them based on their specificity, review their preclinical and clinical data, and extract valuable insights to help guide future cellular therapy development.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/therapy , Treatment Outcome , Immunotherapy , Tumor Microenvironment
20.
ACS Appl Mater Interfaces ; 15(16): 19877-19891, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37040569

ABSTRACT

Engineered cells used as smart vehicles for delivery of secreted therapeutic proteins enable effective treatment of cancer and certain degenerative, autoimmune, and genetic disorders. However, current cell-based therapies use mostly invasive tools for tracking proteins and do not allow for controlled secretion of therapeutic proteins, which could result in unconstrained killing of surrounding healthy tissues or ineffective killing of host cancer cells. Regulating the expression of therapeutic proteins after success of therapy remains elusive. In this study, a noninvasive therapeutic approach mediated by magneto-mechanical actuation (MMA) was developed to remotely regulate the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein, which is secreted by transduced cells. Stem cells, macrophages, and breast cancer cells were transduced with a lentiviral vector encoding the SGpL2TR protein. SGpL2TR comprises TRAIL and GpLuc domains optimized for cell-based applications. Our approach relies on the remote actuation of cubic-shape highly magnetic field responsive superparamagnetic iron oxide nanoparticles (SPIONs) coated with nitrodopamine PEG (ND-PEG), which are internalized within the cells. Cubic ND-PEG-SPIONs actuated by superlow frequency alternating current magnetic fields can translate magnetic forces into mechanical motion and in turn spur mechanosensitive cellular responses. Cubic ND-PEG-SPIONs were artificially designed to effectively operate at low magnetic field strengths (<100 mT) retaining approximately 60% of their saturation magnetization. Compared to other cells, stems cells were more sensitive to the interaction with actuated cubic ND-PEG-SPIONs, which clustered near the endoplasmic reticulum (ER). Luciferase, ELISA, and RT-qPCR analyses revealed a marked TRAIL downregulation (secretion levels were depleted down to 30%) when intracellular particles at 0.100 mg/mL Fe were actuated by magnetic fields (65 mT and 50 Hz for 30 min). Western blot studies indicated actuated, intracellular cubic ND-PEG-SPIONs can cause mild ER stress at short periods (up to 3 h) of postmagnetic field treatment thus leading to the unfolded protein response. We observed that the interaction of TRAIL polypeptides with ND-PEG can also contribute to this response. To prove the applicability of our approach, we used glioblastoma cells, which were exposed to TRAIL secreted from stem cells. We demonstrated that in the absence of MMA treatment, TRAIL essentially killed glioblastoma cells indiscriminately, but when treated with MMA, we were able to control the cell killing rate by adjusting the magnetic doses. This approach can expand the capabilities of stem cells to serve as smart vehicles for delivery of therapeutic proteins in a controlled manner without using interfering and expensive drugs, while retaining their potential to regenerate damaged tissue after treatment. This approach brings forth new alternatives to regulate protein expression noninvasively for cell therapy and other cancer therapies.


Subject(s)
Glioblastoma , Magnetite Nanoparticles , Humans , Magnetite Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...