Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
Chin Med ; 19(1): 81, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38858762

BACKGROUND: Psoriasis is a long-term inflammatory skin disease. A novel herbal formula containing nine Chinese herbal medicines, named Inflammation Skin Disease Formula (ISDF), has been prescribed in clinics for decades. AIMS: To investigate the efficacy and action mechanisms of ISDF on psoriasis using imiquimod (IMQ) and Interleukin-23 (IL-23)-induced models in mice and reveal the pharmacokinetics profile of ISDF in rats. METHODS: Topical administration of IMQ and intradermal injection with IL-23 respectively induced skin lesions like psoriasis on the dorsal area of Balb/c and C57 mice. The mice's body weight, skin thickness, and psoriasis area and severity index (PASI) were assessed weekly. SD rats were used in the pharmacokinetics study and the contents of berberine and baicalin were determined. RESULTS: The PASI scores and epidermal thickness of mice were markedly decreased after ISDF treatment in both models. ISDF treatment significantly decreased the contents of IL-17A and IL-22 in the serum of IMQ- and IL-23-treated mice. Importantly, ISDF markedly downregulated IL-4, IL-6, IL-1ß, and tumor necrosis factor α (TNF-α) gene expression, and the phosphorylation of NF-κB p65, JNK, ERKs and MAPK p38 in IMQ-treated mice. The protein phosphorylation of Jak1, Jak2, Tyk2 and Stat3 was significantly mitigated in the ISDF-treated groups. The absorption of baicalin and berberine of ISDF through the gastrointestinal tract of rats was limited, and their distribution and metabolism in rats were also very slow, which suggested ISDF could be used in the long-term application. CONCLUSIONS: ISDF has a strong anti-psoriatic therapeutic effect on mouse models induced with psoriasis through IMQ and IL-23, which is achieved by inhibiting the activation of the Jak/Stat3-activated IL-23/Th17 axis and the downstream NF-κB signalling and MAPK signalling pathways. ISDF holds great potential to be a therapy for psoriasis and should be further developed for this purpose.

2.
Anal Chim Acta ; 1307: 342640, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719417

BACKGROUND: The analysis of cell membrane permeability plays a crucial role in improving the procedures of cell cryopreservation, which will affect the specific parameter settings in loading, removal and cooling processes. However, existing studies have mostly focused on deriving permeability parameters through osmotic theoretical models and cell volume response analysis, and there is still a lack of the direct experimental evidence and analysis at the single-cell level regarding the migration of cryoprotectants. RESULTS: In this work, a side perfusion microfluidics chips combined with Raman spectroscopy system was built to monitor in situ the Raman spectroscopy of extracellular and intracellular solution during loading and elution process with different cryoprotectant solution systems (single and dual component). And it was found that loading a high concentration cryoprotectant solution system through a single elution cycle may result in significant residual protective agent, which can be mitigated by employing a multi-component formula but multiple elution operations are still necessary. Furthermore, the collected spectral signals were marked and analyzed to was perform preliminary relative quantitative analysis. The results showed that the intracellular concentration changes can be accurately quantified by the Raman spectrum and are closely related to the extracellular solution concentration changes. SIGNIFICANCE AND NOVELTY: By using the method of small flow perfusion (≤20 µL/min) in the side microfluidic chip after the gravity sedimentation of cells, the continuous loading and elution process of different cryoprotectants on chip and the spectral acquisition can be realized. The intracellular and extracellular concentrations can be quantified in situ based on the ratio of spectral peak intensities. These results indicate that spectroscopic analysis can be used to effectively monitor intracellular cryoprotectant residues.


Cryoprotective Agents , Single-Cell Analysis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Cryoprotective Agents/isolation & purification , Lab-On-A-Chip Devices , Humans , Microfluidic Analytical Techniques/instrumentation , Cryopreservation/methods , Animals
3.
Polymers (Basel) ; 16(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38611159

In order to prepare polyimide (PI) films with a low dielectric constant and excellent comprehensive performance, a two-step method was employed in this study to integrate ß-cyclodextrin into a semi-aromatic fluorine-containing polyimide ternary system. By introducing trifluoromethyl groups to reduce the dielectric constant, the dielectric constant was further reduced to 2.55 at 10 MHz. Simultaneously, the film exhibited noteworthy thermal stability (a glass transition temperature exceeding 300 °C) and a high coefficient of thermal expansion. The material also demonstrated outstanding mechanical properties, boasting a strength of 122 MPa and a modulus of 2.2 GPa, along with high optical transparency (transmittance reaching up to 89% at 450 nm). Moreover, the inherent high transparency of colorless polyimide (CPI) combined with good stretchability contributed to the attainment of a low dielectric constant. This strategic approach not only opens up new opportunities for novel electroactive polymers but also holds potential applications in flexible displays, circuit printing, and chip packaging.

4.
Bone Joint Res ; 13(2): 66-82, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38310924

Aims: This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods: Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization. Results: A total of 46 genes were obtained from the intersection of significantly upregulated genes in osteoarthritic cartilage and the key module genes screened by WGCNA. Functional annotation analysis revealed that these genes were closely related to pathological responses associated with OA, such as inflammation and immunity. Four key dysregulated genes (cartilage acidic protein 1 (CRTAC1), iodothyronine deiodinase 2 (DIO2), angiopoietin-related protein 2 (ANGPTL2), and MAGE family member D1 (MAGED1)) were identified after using machine-learning algorithms. These genes had high diagnostic value in both the training cohort and external validation cohort (receiver operating characteristic > 0.8). The upregulated expression of these hub genes in osteoarthritic cartilage signified higher levels of immune infiltration as well as the expression of metalloproteinases and mineralization markers, suggesting harmful biological alterations and indicating that these hub genes play an important role in the pathogenesis of OA. A competing endogenous RNA network was constructed to reveal the underlying post-transcriptional regulatory mechanisms. Conclusion: The current study explores and validates a dysregulated key gene set in osteoarthritic cartilage that is capable of accurately diagnosing OA and characterizing the biological alterations in osteoarthritic cartilage; this may become a promising indicator in clinical decision-making. This study indicates that dysregulated key genes play an important role in the development and progression of OA, and may be potential therapeutic targets.

5.
Small ; 20(23): e2310962, 2024 Jun.
Article En | MEDLINE | ID: mdl-38149522

Photoreversible color switching systems (PCSSs) exhibiting multi-color responses to visible light are favored for sustainable societal development over those relying on ultraviolet light due to safer operation and better penetration depth. Here, a PCSS capable of multi-color switching responsive to visible light based on highly photoreductive rutile-phase Sn-doped TiO2-x nanoparticles is reported. The Sn-doping significantly red-shifts the absorption band of the nanoparticles to the visible region, improving charge separation and transfer efficiencies and introducing Ti3+ species and oxygen vacancies as internal sacrificial electron donors for scavenging photogenerated holes. The resulting Sn-doped TiO2-x nanoparticles feature exceptional photoreduction ability and activity, thereby enabling photoreversible color switching of various redox dyes operational under visible light illumination. Furthermore, multi-color switching can be achieved via the color overlay effect by combining different redox dyes in one system, opening the door to many advanced applications, as demonstrated in their successful uses for developing visible-light-driven rewritable multi-color light-printing systems and visual information displays.

6.
Research (Wash D C) ; 6: 0227, 2023.
Article En | MEDLINE | ID: mdl-37719046

The development of self-powered flexible multicolor electrochromic (EC) systems that could switch different color without an external power supply has remained extremely challenging. Here, a new trilayer film structure for achieving self-powered flexible multicolor EC displays based on self-charging/discharging mechanism is proposed, which is simply assembled by sandwiching an ionic gel film between 2 cathodic nickel hexacyanoferrate (NiHCF) and Prussian blue (PB) nanoparticle films on indium tin oxide substrates. The display exhibits independent self-powered color switching of NiHCF and PB films with fast responsive time and high reversibility by selectively connecting the Al wire as anodes with the 2 EC films. Multicolor switching is thus achieved through a color overlay effect by superimposing the 2 EC films, including green, blue, yellow, and colorless. The bleaching/coloration process of the displays is driven by the discharging/self-charging mechanism for NiHCF and PB films, respectively, ensuring the self-powered color switching of the displays reversibly without an external power supply. It is further demonstrated that patterns can be easily created in the self-powered EC displays by the spray-coating method, allowing multicolor changing to convey specific information. Moreover, a self-powered ionic writing board is demonstrated based on the self-powered EC displays that can be repeatedly written freehand without the need of an external power source. We believe that the design concept may provide new insights into the development of self-powered flexible multicolor EC displays with self-recovered energy for widespread applications.

7.
Lipids Health Dis ; 22(1): 99, 2023 Jul 08.
Article En | MEDLINE | ID: mdl-37422643

BACKGROUND: Heme oxygenase 1 (HO-1) has an influential but insufficiently investigated effect on ferroptosis, which is a novel form of programmed cell death and may play an effect on nonalcoholic steatohepatitis (NASH). However, the understanding of the mechanism is limited. Herein, our study aimed to explore the mechanism and role of HO-1 in NASH ferroptosis. METHODS: Hepatocyte conditional HO-1 knockout (HO-1HEPKO) C57BL/6J mice were established and fed a high-fat diet (HFD). Additionally, wild-type mice were fed either a normal diet or a HFD. Hepatic steatosis, inflammation, fibrosis, lipid peroxidation, and iron overload were assessed. AML12 and HepG2 cells were used to investigate the underlying mechanisms in vitro. Finally, liver sections from NASH patients were used to clinically validate the histopathology of ferroptosis. RESULTS: In mice, HFD caused lipid accumulation, inflammation, fibrosis, and lipid peroxidation, which were aggravated by HO-1HEPKO. In line with the in vivo results, HO-1 knockdown upregulated reactive oxygen species accumulation, lipid peroxidation, and iron overload in AML12 and HepG2 cells. Additionally, HO-1 knockdown reduced the GSH and SOD levels, which was in contrast to HO-1 overexpression in vitro. Furthermore, the present study revealed that the NF-κB signaling pathway was associated with ferroptosis in NASH models. Likewise, these findings were consistent with the liver histopathology results of NASH patients. CONCLUSION: The current study showed that HO-1 could alleviate NASH progression by mediating ferroptosis.


Ferroptosis , Heme Oxygenase-1 , Iron Overload , Non-alcoholic Fatty Liver Disease , Animals , Mice , Ferroptosis/genetics , Fibrosis , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/pathology , Iron Overload/complications , Iron Overload/metabolism , Iron Overload/pathology , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
8.
Int J Biol Sci ; 19(10): 3029-3041, 2023.
Article En | MEDLINE | ID: mdl-37416770

Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates redox homeostasis, plays a pivotal role in several cellular processes such as cell proliferation and survival, and has been found to be aberrantly activated in many cancers. As one of the key oncogenes, Nrf2 represents an important therapeutic target for cancer treatment. Research has unraveled the main mechanisms underlying the Nrf2 pathway regulation and the role of Nrf2 in promoting tumorigenesis. Many efforts have been made to develop potent Nrf2 inhibitors, and several clinical trials are being conducted on some of these inhibitors. Natural products are well-recognized as a valuable source for development of novel therapeutics for cancer. So far, a number of natural compounds have been identified as Nrf2 inhibitors, such as apigenin, luteolin, and quassinoids compounds including brusatol and brucein D. These Nrf2 inhibitors have been found to mediate an oxidant response and display therapeutic effects in different types of human cancers. In this article, we reviewed the structure and function of the Nrf2/Keap1 system and the development of natural Nrf2 inhibitors with an emphasis on their biological function on cancer. The current status regarding the Nrf2 as a potential therapeutic target for cancer treatment was also summarized. It is hoped that this review will stimulate research on naturally occurring Nrf2 inhibitors as therapeutic candidates for cancer treatment.


NF-E2-Related Factor 2 , Neoplasms , Humans , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Neoplasms/drug therapy , Oxidation-Reduction , Carcinogenesis
9.
J Clin Transl Hepatol ; 11(1): 67-75, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36406311

Background and Aims: The impact of nonalcoholic fatty liver disease (NAFLD) on the treatment outcome of chronic hepatitis B (CHB) is undefined and deserves an in-depth investigation. Methods: Histologically-proven CHB receiving first-line antiviral regimens as initial therapy was enrolled and grouped by the concurrence of NAFLD, and followed up at six monthly intervals. Therapeutic response related data were recorded and compared at multiple time points. Kaplan-Meier and Cox regression analyses were utilized to estimate the impact of NAFLD on complete virological response (CVR). Results: We enrolled 267 patients (CHB: 164; CHB with NAFLD: 103) with comparable follow-up durations. They were also comparable in baseline HBV DNA levels and HBeAg positivity. Patients with concomitant NAFLD showed less significant decline in HBV DNA, qHBsAg, pgRNA, and liver enzyme levels over time; moreover, their cumulative incidences of CVR were significantly lower and that of low-level viremia (LLV) were significantly higher at 6, 12, 18, 24 months. First CVR of CHB was delayed with the presence NAFLD (11.0 vs. 7.0 months, p<0.001) and further prolonged with higher grade of liver steatosis (Grade 2-3 vs. 1: 13.0 vs. 9.0 months). On multivariate analysis, HBeAg positivity (HR: 0.650, p=0.036), grade of steatosis (G2 [HR: 0.447, p=0.004]; G3 [HR: 0.085, p=0.002]) and HBV DNA (log10 IU/mL) (HR: 0.687, p<0.001) were significantly associated with delayed CVR, whereas grade of necroinflammation (HR: 1. 758, p<0.001) accelerated the CVR. Conclusions: In CHB patients receiving initial antiviral therapy, NAFLD was associated with higher levels of HBV DNA, pgRNA, and liver enzymes, and higher incidence of LLV and delayed CVR.

10.
Histol Histopathol ; : 18695, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38197199

OBJECTIVE: The aim of this study was to find novel biomarkers and develop a non-invasive, effective diagnostic model for hepatitis B Virus-related chronic hepatitis and liver fibrosis/cirrhosis. METHOD: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to assess the expression of differentially expressed genes (AGRN, JAG1, CCL5, ID3, CCND1, and CAPN2) in peripheral blood mononuclear cells (PBMCs) from healthy subjects, chronic hepatitis B (CHB), and liver fibrosis/cirrhosis (LF/LC) patients. The molecular mechanisms underlying AGRN-regulated CHB were further explored and verified in LX2 cells, in which small interfering RNA (siRNA) was used to block AGRN gene expression. Finally, enzyme-linked Immunosorbent Assay (ELISA) was used to measure AGRN protein expression in 100 healthy volunteers, 100 CHB patients, and 100 LF/LC patients, and the efficacy of the diagnostic model was assessed by the Area Under the Curve (AUC). RESULTS: AGRN mRNA displayed a steady rise in the PBMCs of normal, CHB, and LF/LC patients. Besides, AGRN expression was markedly elevated in activated LX2 cells, whereas the expression of COL1 and α-SMA decreased when AGRN was inhibited using siRNA. In addition, downregulation of AGRN can reduce the gene expression of ß-catenin and c-MYC while upregulating the expression of GSK-3ß. Furthermore, PLT and AGRN were used to develop a non-invasive diagnostic model (PA). To identify CHB patients from healthy subjects, the AUC of the PA model was 0.951, with a sensitivity of 87.0% and a specificity of 91.0%. The AUC of the PA model was 0.922 with a sensitivity of 82.0% and a specificity of 90.0% when differentiating between LF/LC and CHB patients. CONCLUSION: The current study indicated that AGRN could be a potential plasma biomarker and the established PA model could improve the diagnostic accuracy for HBV-related liver diseases.

11.
J Cell Plast ; 58(2): 305-323, 2022 Mar.
Article En | MEDLINE | ID: mdl-35535315

In this study, foamed recycled high density polyethylene (rHDPE) parts were produced by rotational molding using different concentration (0 to 1% wt.) of a chemical blowing agent (CBA) based on azodicarbonamide. From the samples produced, a complete morphological, thermal and mechanical characterization was performed. The morphological analysis showed a gradual increase in the average cell size, while the cell density firstly increased and then decreased with increasing CBA content. As expected, increasing the CBA content decreased the foam density as well as the thermal conductivity. Although increasing the CBA content decreased both tensile and flexural properties, the impact strength showed a similar trend as the cell density with an optimum CBA content around 0.1% wt. Finally, neat rHDPE samples were also produced by compression molding. The results showed negligible differences between the rotomolded and compression molded properties indicating that optimal rotomolding conditions were selected. These results confirm the possibility of using 100% recycled polymers to produce rotomolded foam parts.

12.
Front Pharmacol ; 13: 853119, 2022.
Article En | MEDLINE | ID: mdl-35370639

Brucea javanica (Ya-dan-zi in Chinese) is a well-known Chinese herbal medicine, which is traditionally used in Chinese medicine for the treatment of intestinal inflammation, diarrhea, malaria, and cancer. The formulation of the oil (Brucea javanica oil) has been widely used to treat various types of cancer. It has also been found that B. javanica is rich in chemical constituents, including quassinoids, triterpenes, alkaloids and flavonoids. Pharmacological studies have revealed that chemical compounds derived from B. javanica exhibit multiple bioactivities, such as anti-cancer, anti-bacterial, anti-diabetic, and others. This review provides a comprehensive summary on the pharmacological properties of the main chemical constituents presented in B. javanica and their underlying molecular mechanisms. Moreover, the review will also provide scientific references for further research and development of B. javanica and its chemical constituents into novel pharmaceutical products for disease management.

13.
Phytomedicine ; 85: 153550, 2021 May.
Article En | MEDLINE | ID: mdl-33831691

BACKGROUND: Berberine (BBR) has been widely used to treat non-alcoholic fatty liver disease (NAFLD). The metabolites of BBR were believed to contribute significantly to its pharmacological effects. Oxyberberine (OBB), a gut microbiota-mediated oxidative metabolite of BBR, has been firstly identified in our recent work. PURPOSE: Here, we aimed to comparatively investigate the anti-NAFLD properties of OBB and BBR. METHODS: The anti-NAFLD effect was evaluated in high-fat diet-induced obese NAFLD rats with biochemical/ELISA tests and histological staining. The related gene and protein expressions were detected by qRT-PCR and Western blotting respectively. Molecular docking and dynamic simulation were also performed to provide further insight. RESULTS: Results indicated OBB remarkably and dose-dependently attenuated the clinical manifestations of NAFLD, which (100 mg/kg) achieved similar therapeutic effect to metformin (300 mg/kg) and was superior to BBR of the same dose. OBB significantly inhibited aberrant phosphorylation of IRS-1 and up-regulated the downstream protein expression and phosphorylation (PI3K, p-Akt/Akt and p-GSK-3ß/GSK-3ß) to improve hepatic insulin signal transduction. Meanwhile, OBB treatment remarkably alleviated inflammation via down-regulating the mRNA expression of MCP-1, Cd68, Nos2, Cd11c, while enhancing Arg1 mRNA expression in white adipose tissue. Moreover, OBB exhibited closer affinity with AMPK in silicon and superior hyperphosphorylation of AMPK in vivo, leading to increased ACC mRNA expression in liver and UCP-1 protein expression in adipose tissue. CONCLUSION: Taken together, compared with BBR, OBB was more capable of maintaining lipid homeostasis between liver and WAT via attenuating hepatic insulin pathway and adipocyte inflammation, which was associated with its property of superior AMPK activator.


Berberine/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , AMP-Activated Protein Kinase Kinases , Adipose Tissue, White/drug effects , Animals , Diet, High-Fat , Homeostasis , Inflammation/drug therapy , Insulin/metabolism , Liver/drug effects , Male , Molecular Docking Simulation , Obesity , Oxidation-Reduction , Phosphorylation , Protein Kinases/metabolism , Rats , Signal Transduction/drug effects
14.
Polymers (Basel) ; 12(2)2020 Feb 03.
Article En | MEDLINE | ID: mdl-32028586

Feathers, which contain >90% keratin, are valuable natural protein resources. The aim of this study is to prepare antimicrobial feather keratin (FK)-based nanofibers by incorporating silver nanoparticles (AgNPs). A series of AgNPs-embedded feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) (FK/PVA/PEO) composite nanofibers with varying amounts of AgNPs content were fabricated by electrospinning. Their morphology, crystallinity, thermal stability, tensile property, and antibacterial activity were systematically investigated. The average diameters of composite nanofibers gradually decreased with increases in the amount of AgNPs. The crystallinity, thermal stability, and antibacterial activity of FK/PVA/PEO nanofibers were enhanced by embedding AgNPs. When embedded with 1.2% AgNPs, both the tensile strength and elongation-at-break reached the highest level. This work has the potential to expand the application of FK-based nanofibers in the biomaterial field.

15.
Polymers (Basel) ; 12(1)2020 Jan 08.
Article En | MEDLINE | ID: mdl-31936219

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.

16.
Biomed Pharmacother ; 114: 108766, 2019 Jun.
Article En | MEDLINE | ID: mdl-30901719

Brucea javanica is an important Chinese folk medicine traditionally used for the treatment of dysentery (also known as inflammatory bowel diseases). Brucea javanica oil emulsion (BJOE), the most common preparation of Brucea javanica, has a variety of pharmacological activities. In this follow-up investigation, we endeavored to illuminate the potential benefit of BJOE on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced Crohn's disease (CD) in rats and decipher the mechanism of action. The result illustrated that BJOE treatment significantly reduced the body weight loss, disease activity index and macroscopic scores, ameliorated shortening of colon length, arrested colonic histopathological deteriorations, lowered the histological scores in parallel to the model group. Furthermore, BJOE also decreased the levels of MPO and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-17, IL-23 and IFN-γ), and increased the levels of anti-inflammatory cytokines (IL-4, IL-10 and TGF-ß) as compared with the model group. In addition, the elevated mRNA expression of MMP-1, MMP-3 and RAGE induced by TNBS was remarkably inhibited by BJOE, SASP or AZA treatments, while the mRNA expression of PPAR-γ was significantly enhanced. Furthermore, the activation of TLR4/NF-κB signaling pathway was significantly inhibited by AZA and BJOE treatment when compared with that of TNBS-treated rats. Our study suggested that BJOE exerted superior therapeutic effect to SASP and AZA in treating TNBS-induced colitis in rats. The protective effect of BJOE may involve the inhibition of the TLR4/NF-κB-mediated inflammatory responses. These results indicated that BJOE held promising potential to be further developed into a novel candidate for the treatment of CD.


Brucea/chemistry , Crohn Disease/drug therapy , Emulsions/pharmacology , NF-kappa B/metabolism , Plant Oils/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Animals , Colon/drug effects , Colon/metabolism , Crohn Disease/metabolism , Cytokines/metabolism , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
17.
Int J Nanomedicine ; 13: 5887-5907, 2018.
Article En | MEDLINE | ID: mdl-30319255

BACKGROUND: Bruceine D (BD) is a major bioactive component isolated from the traditional Chinese medicinal plant Brucea javanica which has been widely utilized to treat dysentery (also known as ulcerative colitis [UC]). METHODS: To improve the water solubility and absolute bioavailability of BD, we developed a self-nanoemulsifying drug delivery system (SNEDDS) composing of MCT (oil), Solutol HS-15 (surfactant), propylene glycol (co-surfactant) and BD. The physicochemical properties and pharmacokinetics of BD-SNEDDS were characterized, and its anti-UC activity and potential mechanism were evaluated in TNBS-induced UC rat model. RESULTS: The prepared nanoemulsion has multiple beneficial aspects including small mean droplet size, low polydispersity index (PDI), high zeta potential (ZP) and excellent stability. Transmission electron microscopy showed that nanoemulsion droplets contained uniform shape and size of globules. Pharmacokinetic studies demonstrated that BD-SNEDDS exhibited enhanced pharmacokinetic parameters as compared with BD-suspension. Moreover, BD-SNEDDS significantly restored the colon length and body weight, reduced disease activity index (DAI) and colon pathology, decreased histological scores, diminished oxidative stress, and suppressed TLR4, MyD88, TRAF6, NF-κB p65 protein expressions in TNBS-induced UC rat model. CONCLUSION: These results demonstrated that BD-SNEDDS exhibited highly improved oral bioavailability and advanced anti-UC efficacy. In conclusion, our current results provided a foundation for further research of BD-SNEDDS as a potential complementary therapeutic agent for UC treatment.


Colitis, Ulcerative/drug therapy , Drug Delivery Systems/methods , Emulsions/chemistry , Quassins/therapeutic use , Animals , Biological Availability , Colitis, Ulcerative/pathology , Drug Liberation , Gene Expression Regulation/drug effects , Male , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Oils/chemistry , Particle Size , Phase Transition , Quassins/chemistry , Quassins/pharmacokinetics , Quassins/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Solubility
18.
Pharmacol Res ; 137: 34-46, 2018 11.
Article En | MEDLINE | ID: mdl-30243842

Inflammatory bowel disease (IBD), majorly include Crohn's disease (CD) and ulcerative colitis (UC), is chronic and relapsing inflammatory disorders of the gastrointestinal tract, which treatment options remain limited. Here we examined the therapeutic effects of an isoquinoline alkaloid, Palmatine (Pal), on mice experimental colitis induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Colitis was induced in BALB/c mice by administering 3% DSS in drinking water for 7 days. Pal (50 and 100 mg kg-1) and the positive drug Sulfasalazine (SASP, 200 mg kg-1) were orally administered for 7 days. Disease activity index (DAI) was evaluated on day 8, and colonic tissues were collected for biochemistry analysis. The fecal microbiota was characterized by high-throughput Illumina MiSeq sequencing. And plasma metabolic changes were detected by UPLC-MS. Our results showed that Pal treatment significantly reduced DAI scores and ameliorated colonic injury in mice with DSS-induced colitis. Mucosal integrity was improved and cell apoptosis was inhibited. Moreover, gut microbiota analysis showed that mice received Pal-treatment have higher relative abundance of Bacteroidetes and Firmicutes, but reduced amount of Proteobacteria. Moreover, Pal not only suppressed tryptophan catabolism in plasma, but also decreased the protein expression of indoleamine 2,3-dioxygenase 1 (IDO-1, the rate-limiting enzyme of tryptophan catabolism) in colon tissue. This is consolidated by molecular docking, which suggested that Pal is a potent IDO-1 inhibitor. Taken together, our findings demonstrate that Pal ameliorated DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis, and regulating tryptophan catabolism, which indicated that Pal has great therapeutic potential for colitis.


Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Berberine Alkaloids/pharmacology , Berberine Alkaloids/therapeutic use , Colitis/drug therapy , Gastrointestinal Microbiome/drug effects , Tryptophan/metabolism , Animals , Colitis/metabolism , Colitis/microbiology , Colitis/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Male , Mice, Inbred BALB C , Mucins/genetics , Tight Junction Proteins/genetics
19.
Phytomedicine ; 39: 111-118, 2018 Jan 15.
Article En | MEDLINE | ID: mdl-29433672

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are most widely used as effective anti-inflammatory agents. However, their clinical application brings about inevasible gastrointestinal side effects. Pogostemon cablin is a traditional herbal medicine used for the treatment of gastrointestinal diseases in China. One of its representative components, the tricyclic triterpenoid ß-patchoulone (ß-PAE) has demonstrated great anti-inflammatory activity and gastroprotective effect against ethanol-induced gastric injury, but its protective effect against gastric ulcer induced by indomethacin is still unknown. PURPOSE: To assess the protective effect of ß-PAE against ulcer produced by indomethacin and reveal the underlying pharmacological mechanism. STUDY DESIGN: We used an indomethacin-induced gastric ulcer model of rats in vivo. METHODS: Gastroprotective activity of ß-PAE (10, 20, 40 mg/kg, i.g.) was estimated via indomethacin-induced gastric ulcer model in rats. Histopathological and histochemical assessment of ulcerated tissues were performed. Protein and mRNA expression were determined by Elisa, Western blotting and qRT-PCR. RESULTS: ß-PAE could inhibit ulcer formation. Histopathological and histochemical assessment macroscopically demonstrated that ß-PAE alleviates indomethacin-induced gastric ulceration in dose-dependent manner. After administration of ß-PAE, elevated tumor necrosis factor -α level was significantly decreased and the phosphorylation of JNK and IκB was markedly inhibited. ß-PAE suppressed the levels of E-selectin, P-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule and monocyte chemoattractant protein 1, as well as myeloperoxidase. Meanwhile, ß-PAE increased cyclooxygenase enzyme activities (COX-1 and COX-2) to enhance the production of prostaglandin E2. Proangiogenic protein, vascular endothelial growth factor and its receptor fms-like tyrosine kinase-1 mRNA expression were promoted while anti-angiogenic protein, endostatin-1 and its receptor ETAR mRNA expression were decreased. CONCLUSION: ß-PAE may provide gastroprotection in indomethacin-induced gastric ulcer in rats by reducing inflammatory response and improving angiogenesis.


Indomethacin/adverse effects , Protective Agents/pharmacology , Sesquiterpenes/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Angiogenesis Inducing Agents/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Ulcer Agents/pharmacology , Dinoprostone/metabolism , Drugs, Chinese Herbal/pharmacology , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Male , Pogostemon/chemistry , Rats, Sprague-Dawley , Sesquiterpenes, Guaiane , Stomach Ulcer/pathology , Tumor Necrosis Factor-alpha/metabolism
20.
Mol Med Rep ; 17(1): 789-800, 2018 Jan.
Article En | MEDLINE | ID: mdl-29115625

Silymarin has been used in the treatment of a number of liver diseases for a long time, but its efficacy in preventing triptolide induced acute hepatotoxicity has not been reported previously. The present study aimed to assess the protective effect of silymarin against triptolide (TP)-induced hepatotoxicity in rats. Rats were orally administrated with silymarin (50, 100 and 200 mg/kg) for 7 days and received intraperitoneal TP (2 mg/kg) on the day 8. Hepatic injuries were comprehensively evaluated in terms of serum parameters, morphological changes, oxidative damage, inflammation and apoptosis. The results demonstrated that TP-induced increases in serum parameters, including alanine transaminase, aspartate aminotransferase, alkaline phosphatase, total cholesterol and γ-glutamyl transpeptidase, which were determined using a biochemical analyzer, and histopathological alterations and hepatocyte apoptosis as determined by hematoxylin and eosin and TUNEL staining, respectively, were prevented by silymarin pretreatment in a dose-dependent manner. TP-induced depletions in the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, glutathione S-transferase and catalase, and glutathione levels, were also significantly reversed by silymarin, as determined using specific kits. Additionally, silymarin dose-dependently exhibited inhibitory effects on malonaldehyde content in the liver. The production of proinflammatory cytokines was investigated using ELISA kits, and the results demonstrated that silymarin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 and IL-1ß in the liver. To determine the mechanism of silymarin, western blot analysis was performed to investigate the protein expression of phosphorylated (p)-p38 and p-c-Jun N-terminal kinase (JNK) of the TNF-α induced inflammatory response and apoptotic pathways. Silymarin significantly blocked p38 and JNK phosphorylation and activation. Additionally, the expression of the proapoptotic proteins cytochrome c, cleaved caspase-3 and Bcl-2-associated X was also reduced following treatment with silymarin, as determined by ELISA, western blotting and immunohistochemistry, respectively. In conclusion, silymarin was demonstrated to dose-dependently protect rat liver from TP-induced acute hepatotoxicity, with the high dose (200 mg/kg) achieving a superior effect. This protective effect may be associated with the improvement of antioxidant and anti-inflammatory status, as well as the prevention of hepatocyte apoptosis. Therefore, silymarin may have the potential to be applied clinically to prevent TP-induced acute hepatotoxicity.


Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Diterpenes/toxicity , Phenanthrenes/toxicity , Protective Agents/pharmacology , Silymarin/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Cytokines/metabolism , Disease Models, Animal , Diterpenes/chemistry , Epoxy Compounds/chemistry , Epoxy Compounds/toxicity , Hepatocytes/drug effects , Hepatocytes/metabolism , Inflammation Mediators/metabolism , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Phenanthrenes/chemistry , Protective Agents/chemistry , Rats , Reactive Oxygen Species/metabolism , Silymarin/chemistry
...