Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732059

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Anthocyanins , Ethylenes , Fruit , Gene Expression Regulation, Plant , Mangifera , Plant Proteins , Transcription Factors , Mangifera/metabolism , Mangifera/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Anthocyanins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Pigmentation/genetics , Chlorophyll/metabolism
2.
Fish Physiol Biochem ; 47(6): 1893-1907, 2021 Dec.
Article En | MEDLINE | ID: mdl-34581919

Memory drove a critical process of feeding habit transformation in Chinese perch when they re-trained to eat dead prey fish. To investigate the regulatory mechanism of cAMP-response element-binding protein (CREB) signaling pathway on the memory of Chinese perch during feeding habit transformation, the phosphorylation levels of upstream signal proteins of CREB between the control group (trained once) and the experimental group (trained twice) were measured. The results illustrated that the re-training was correlated to phosphorylation of extracellular regulated protein kinase (ERK1/2) and calcium/calmodulin-dependent protein kinase II (CaMKII), and dephosphorylation of protein kinase A (PKA) of Chinese perch. Inhibition of ERK1/2-CREB pathway decreased the mRNA levels of memory-related genes ((fos-related antigen 2 (fra2), CCAAT enhancer-binding protein delta (c/ebpb), immediate-early gene zif268 (zif268), proto-oncogenes c-fos (c-fox) and synaptotagmin-IV (sytIV)) and mRNA levels of appetite-related genes (agouti-related peptide (agrp) and ghrelin), and activation of PP1-CREB pathway increased the phosphorylated levels of CREB, the mRNA levels of memory-related genes (fra2, c/ebpb, zif268, and c-fox), and the mRNA levels of appetite-related genes (pro-opiomelanocortin (pomc) and leptin) in primary brain cells of Chinese perch. The memory in Chinese perch feeding habit transformation was associated with the ERK1/2-CREB and PP1-CREB pathways, which could regulate the transcription of memory-related genes and appetite-related genes.


Cyclic AMP Response Element-Binding Protein , Feeding Behavior , Memory , Perches , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , RNA, Messenger
3.
Sci Total Environ ; 785: 147185, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-33933763

Corpse degradation may release amounts of hazardous materials (e.g., cadaverine, putrescine and ammonia) into surrounding areas, which deteriorate environments and result in nitrogen contamination. Nitrate or nitrite can be reduced to nitrogen gas by denitrifying bacteria, thus alleviating nitrogen contamination and purifying aquatic environments. However, the reaction of nirS-encoding denitrifiers to carcass degradation is less studied. Therefore, water physiochemical analysis and high-throughput sequencing were applied to explore the successional pattern of nirS denitrifying communities in the Yellow River water and tap water during three stages of animal cadaver decay (submerged fresh, advanced floating decay as well as sunken remains) and relevant control group. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4+-N) concentration in corpse groups were highly elevated compared with control groups. The dominant phylum for nirS denitrifying communities was Proteobacteria. Abundant denitrifying genera Paracoccus, Alicycliphilus and Diaphorobacter were detected, and these genera have been reported to participate in the degradation of organic pollutants. Particularly, nirS-type community structures were remarkably influenced by corpse decay and became similar with succession. Water total dissolved solids (TDS), salinity, conductivity (CON) and phosphate were primary impacting factors driving the community structures, but the effect of water type was almost negligible. Notably, denitrifying community assembly was dominated by deterministic processes rather than stochastic processes, and the relative importance of deterministic processes among most corpse groups was higher than that in control groups, indicating that environmental filtering regulates the denitrifying communities. Our results provide new insight into environmental purification for hazardous materials produced by corpse degradation, thereby providing valuable advice to environmental administration.


Denitrification , Water Quality , Animals , Bacteria , Cadaver , Nitrogen
4.
Anim Genet ; 52(3): 311-320, 2021 Jun.
Article En | MEDLINE | ID: mdl-33598959

Chinese perch, Siniperca chuatsi (Basilewsky), is one of the most commercially important cultured fishes in China. In the present study, a high-density genetic linkage map of Chinese perch was constructed by genotyping-by-sequencing technique with an F1 mapping panel containing 190 progenies. A total of 2328 SNPs were assigned to 24 linkage groups (LGs), agreeing with the chromosome haploid number in this species (n = 24). The sex-averaged map covered 97.9% of the Chinese perch genome, with the length of 1694.3 cM and a marker density of 0.7 cM/locus. The number of markers per LG ranged from 57 to 222, with a mean of 97. The length of LGs varied from 43.2 to 108.2 cM, with a mean size of 70.6 cM. The recombination rate of females was 1.5:1, which was higher than that of males. To better understand the distribution pattern of segregation distortion between the two sexes of Chinese perch, the skewed markers were retained and used to reconstruct the sex-specific maps. The 16 segregation distortion regions were identified on 10 LGs of the female map, while 12 segregation distortion regions on eight LGs of the male map. Among these LGs, six LGs matched between the sex-specific maps. This high-density linkage map could provide a solid basis for identifying QTL associated with economically important traits, and for implementing marker-assisted selection breeding of Chinese perch.


Chromosome Mapping , Genetic Linkage , Perches/genetics , Animals , Chromosome Mapping/veterinary , Female , Genetic Markers , Genotype , Male , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
Commun Biol ; 3(1): 361, 2020 07 09.
Article En | MEDLINE | ID: mdl-32647268

Mandarin fishes (Sinipercidae) are piscivores that feed solely on live fry. Unlike higher vertebrates, teleosts exhibit feeding behavior driven mainly by genetic responses, with no modification by learning from parents. Mandarin fishes could serve as excellent model organisms for studying feeding behavior. We report a long-read, chromosomal-scale genome assembly for Siniperca chuatsi and genome assemblies for Siniperca kneri, Siniperca scherzeri and Coreoperca whiteheadi. Positive selection analysis revealed rapid adaptive evolution of genes related to predatory feeding/aggression, growth, pyloric caeca and euryhalinity. Very few gill rakers are observed in mandarin fishes; analogously, we found that zebrafish deficient in edar had a gill raker loss phenotype and a more predatory habit, with reduced intake of zooplankton but increased intake of prey fish. Higher expression of bmp4, which could inhibit edar expression and gill raker development through binding of a Xvent-1 site upstream of edar, may cause predatory feeding in Siniperca.


Feeding Behavior/physiology , Fish Proteins/genetics , Genetic Markers , Genome , Perciformes/genetics , Predatory Behavior/physiology , Animals , Evolution, Molecular , Fish Proteins/metabolism , Perciformes/classification , Perciformes/physiology , Phylogeny , Sequence Analysis, DNA
6.
Int J Mol Sci ; 20(18)2019 Sep 07.
Article En | MEDLINE | ID: mdl-31500232

Social learning plays important roles in gaining new foraging skills and food preferences. However, the potential role and molecular mechanism of social learning in acquiring new feeding habits is less clear in fish. In the present study, we examined the success rate of feeding habit domestication from live prey fish to dead prey fish, as well as the food intake of dead prey fish in mandarin fish with or without feeders of dead prey fish as demonstrators. Here, we found that mandarin fish can learn from each other how to solve novel foraging tasks, feeding on dead prey fish. In addition, the analysis of gene expressions and signaling pathways of learning through Western blotting and transcriptome sequencing shows that the expression of the c-fos, fra2, zif268, c/ebpd and sytIV genes were significantly increased, and the anorexigenic pomc and leptin a expressions were decreased in fish of the learning group. The phosphorylation levels of protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the learning group were significantly higher than those of the control group, while the phosphorylation level of S6 ribosomal protein (S6) was lower. With the inhibitors of PKA and CaMKII signaling and the chromatin immunoprecipitation (ChIP) assay, we further found that the social learning of new feeding habits in mandarin fish could be attributed to the activation of the CaMKII signaling pathway and then the stimulation of the expression of the c-fos gene, which might be an important transcriptional factor to inhibit the expression of the anorexigenic gene pomc, resulting in the food intake of dead prey fish in mandarin fish. Altogether, our results support the hypothesis that social learning could facilitate the acquisition of novel feeding habits in fish, and it considerably increases the rate of subsequent individual food intake and domestication through the interaction between the learning gene c-fos and the appetite control gene pomc.


Fish Proteins/genetics , Fishes/physiology , Food Preferences/physiology , Social Learning/physiology , Animals , Behavior, Animal , Domestication , Eating , Fish Proteins/metabolism , Gene Expression Profiling/veterinary , Gene Expression Regulation , Phosphorylation , Predatory Behavior , Sequence Analysis, RNA/veterinary
7.
Int J Mol Sci ; 19(4)2018 Apr 22.
Article En | MEDLINE | ID: mdl-29690543

Mandarin fish refuse dead prey fish or artificial diets and can be trained to transform their inborn feeding habit. To investigate the effect of memory on feeding habit transformation, we compared the reaction time to dead prey fish and the success rate of feeding habit transformation to dead prey fish with training of mandarin fish in the 1st experimental group (trained once) and the 2nd experimental group (trained twice). The mandarin fish in the 2nd group had higher success rate of feeding habit transformation (100%) than those in the 1st group (67%), and shorter reaction time to dead prey fish (<1 s) than those in the 1st group (>1 s). Gene expression of cAMP responsive element binding protein I (Creb I), brain-derived neurotrophic factor (Bdnf), CCAAT enhancer binding protein delta (C/EBPD), fos-related antigen 2 (Fra2), and proto-oncogenes c-fos (c-fos) involved in long-term memory formation were significantly increased in the 2nd group after repeated training, and taste 1 receptor member 1 (T1R1), involved in feeding habit formation, was significantly increased in brains of the 2nd group after repeated training. DNA methylation levels at five candidate CpG (cytosine⁻guanine) sites contained in the predicted CpG island in the 5′-flanking region of T1R1 were significantly decreased in brains of the 2nd group compared with that of the 1st group. These results indicated that the repeated training can improve the feeding habit transformation through the memory formation of accepting dead prey fish. DNA methylation of the T1R1 might be a regulatory factor for feeding habit transformation from live prey fish to dead prey fish in mandarin fish.


Habits , Memory/physiology , Animals , CpG Islands/genetics , DNA Methylation/physiology , Fishes , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
8.
Int J Mol Sci ; 13(10): 13203-11, 2012 Oct 15.
Article En | MEDLINE | ID: mdl-23202947

We described and characterized 11 expressed sequence tag (EST)-derived simple sequence repeats (SSR) and seven genomic (G)-derived SSRs in Coreoperca whiteheadi Boulenger. The EST-SSRs comprised 62.2% di-nucleotide repeats, 32.2% tri-nucleotide repeats and 5.5% tetra-nucleotide repeats, whereas the majority of the G-SSRs were tri-nuleotide repeats (81.4%). The number of alleles for the 18 loci ranged from 3 to 6, with a mean of 3.8 alleles per locus. The observed (Ho) and expected heterozygosities (He) values ranged from 0.375 to 1.000, and 0.477 to 0.757, respectively. The polymorphic information content (PIC) values ranged from 0.466 to 0.706. The mean values number of alleles, Ho, He, and PIC of EST-SSRs were higher than those of the G-SSRs. Four microsatellite loci deviated significantly from Hardy-Weinberg equilibrium (HWE) after Bonferroni correction and no significant deviations in linkage disequilibrium (LD) were observed. These loci are the first to be characterized in C. whiteheadi and should be useful in the investigation of a genetic evaluation for conservation. Compared with 11 loci in C. whiteheadi, 37 potential polymorphic EST-SSRs were found in Siniperca chuatsi (Basilewsky), which will provide a valuable tool for mapping studies and molecular breeding programs in S. chuatsi.


Chordata/genetics , Microsatellite Repeats/genetics , Alleles , Animals , Chordata/metabolism , Expressed Sequence Tags , Gene Expression Profiling , Gene Library , Genetic Loci , Genetic Markers , Genomics , Linkage Disequilibrium , Polymorphism, Genetic , Sequence Analysis, DNA
...