Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Arterioscler Thromb Vasc Biol ; 38(1): 275-282, 2018 01.
Article in English | MEDLINE | ID: mdl-29191927

ABSTRACT

OBJECTIVE: Exposure to mobile source emissions is nearly ubiquitous in developed nations and is associated with multiple adverse health outcomes. There is an ongoing need to understand the specificity of traffic exposure associations with vascular outcomes, particularly in individuals with cardiovascular disease. APPROACH AND RESULTS: We performed a cross-sectional study using 2124 individuals residing in North Carolina, United States, who received a cardiac catheterization at the Duke University Medical Center. Traffic-related exposure was assessed via 2 metrics: (1) the distance between the primary residence and the nearest major roadway; and (2) location of the primary residence in regions defined based on local traffic patterns. We examined 4 cardiovascular disease outcomes: hypertension, peripheral arterial disease, the number of diseased coronary vessels, and recent myocardial infarction. Statistical models were adjusted for race, sex, smoking, type 2 diabetes mellitus, body mass index, hyperlipidemia, and home value. Results are expressed in terms of the odds ratio (OR). A 23% decrease in residential distance to major roadways was associated with higher prevalence of peripheral arterial disease (OR=1.29; 95% confidence interval, 1.08-1.55) and hypertension (OR=1.15; 95% confidence interval, 1.01-1.31). Associations with peripheral arterial disease were strongest in men (OR=1.42; 95% confidence interval, 1.17-1.74) while associations with hypertension were strongest in women (OR=1.21; 95% confidence interval, 0.99-1.49). Neither myocardial infarction nor the number of diseased coronary vessels were associated with traffic exposure. CONCLUSIONS: Traffic-related exposure is associated with peripheral arterial disease and hypertension while no associations are observed for 2 coronary-specific vascular outcomes.


Subject(s)
Cardiac Catheterization , Hypertension/diagnosis , Hypertension/epidemiology , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Residence Characteristics , Traffic-Related Pollution/adverse effects , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , North Carolina/epidemiology , Prevalence , Risk Assessment , Risk Factors
2.
PLoS One ; 11(4): e0152670, 2016.
Article in English | MEDLINE | ID: mdl-27082954

ABSTRACT

There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic ("traffic exposure")-a recognized vascular disease risk factor-on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3' untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family, associated with PAD via an interaction with traffic air pollution exposure. These results also highlight the potential for interactions studies, particularly at the genome scale, to reveal novel biology linking environmental exposures to clinical outcomes.


Subject(s)
Air Pollution/adverse effects , Bone Morphogenetic Proteins/genetics , Environmental Exposure/adverse effects , Housing , Peripheral Arterial Disease/genetics , Polymorphism, Single Nucleotide , Transportation , Air Pollution/analysis , Environmental Exposure/analysis , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Peripheral Arterial Disease/chemically induced
3.
Environ Res ; 145: 9-17, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26613345

ABSTRACT

BACKGROUND: Epidemiological studies have identified associations between long-term PM2.5 exposure and cardiovascular events, though most have relied on concentrations from central-site air quality monitors. METHODS: We utilized a cohort of 5679 patients who had undergone cardiac catheterization at Duke University between 2002-2009 and resided in North Carolina. We used estimates of daily PM2.5 concentrations for North Carolina during the study period based on satellite derived Aerosol Optical Depth (AOD) measurements and PM2.5 concentrations from ground monitors, which were spatially resolved with a 10×10km resolution, matched to each patient's residential address and averaged for the year prior to catheterization. The Coronary Artery Disease (CAD) index was used to measure severity of CAD; scores >23 represent a hemodynamically significant coronary artery lesion in at least one major coronary vessel. Logistic regression modeled odds of having CAD or an MI with each 1µg/m(3) increase in annual average PM2.5, adjusting for sex, race, smoking status and socioeconomic status. RESULTS: In adjusted models, a 1µg/m(3) increase in annual average PM2.5 was associated with an 11.1% relative increase in the odds of significant CAD (95% CI: 4.0-18.6%) and a 14.2% increase in the odds of having a myocardial infarction (MI) within a year prior (95% CI: 3.7-25.8%). CONCLUSIONS: Satellite-based estimates of long-term PM2.5 exposure were associated with both coronary artery disease (CAD) and incidence of myocardial infarction (MI) in a cohort of cardiac catheterization patients.


Subject(s)
Coronary Artery Disease/epidemiology , Environmental Exposure/analysis , Particulate Matter/analysis , Adult , Aged , Aged, 80 and over , Cohort Studies , Coronary Artery Disease/etiology , Environmental Exposure/statistics & numerical data , Female , Humans , Incidence , Logistic Models , Male , Middle Aged , North Carolina/epidemiology , Particle Size , Particulate Matter/toxicity , Satellite Communications , Spatio-Temporal Analysis , Young Adult
4.
Environ Health Perspect ; 123(10): 1007-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25807578

ABSTRACT

BACKGROUND: The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact of air pollution on human health. OBJECTIVE: We examined associations between roadway proximity and traffic exposure zones, as markers of TRAP exposure, and metabolic biomarkers for cardiovascular disease risk in a cohort of patients undergoing cardiac catheterization. METHODS: We performed a cross-sectional study of 2,124 individuals residing in North Carolina (USA). Roadway proximity was assessed via distance to primary and secondary roadways, and we used residence in traffic exposure zones (TEZs) as a proxy for TRAP. Two categories of metabolic outcomes were studied: measures associated with glucose control, and measures associated with lipid metabolism. Statistical models were adjusted for race, sex, smoking, body mass index, and socioeconomic status (SES). RESULTS: An interquartile-range (990 m) decrease in distance to roadways was associated with higher fasting plasma glucose (ß = 2.17 mg/dL; 95% CI: -0.24, 4.59), and the association appeared to be limited to women (ß = 5.16 mg/dL; 95% CI: 1.48, 8.84 compared with ß = 0.14 mg/dL; 95% CI: -3.04, 3.33 in men). Residence in TEZ 5 (high-speed traffic) and TEZ 6 (stop-and-go traffic), the two traffic zones assumed to have the highest levels of TRAP, was positively associated with high-density lipoprotein cholesterol (HDL-C; ß = 8.36; 95% CI: -0.15, 16.9 and ß = 5.98; 95% CI: -3.96, 15.9, for TEZ 5 and 6, respectively). CONCLUSION: Proxy measures of TRAP exposure were associated with intermediate metabolic traits associated with cardiovascular disease, including fasting plasma glucose and possibly HDL-C.


Subject(s)
Air Pollutants/toxicity , Blood Glucose/metabolism , Cardiovascular Diseases/epidemiology , Environmental Exposure , Vehicle Emissions/toxicity , Adult , Aged , Cardiac Catheterization/statistics & numerical data , Cardiovascular Diseases/chemically induced , Cross-Sectional Studies , Fasting , Female , Humans , Male , Middle Aged , North Carolina/epidemiology , Residence Characteristics , Risk Factors
5.
Hum Genet ; 132(12): 1371-82, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23907653

ABSTRACT

We performed a gene-smoking interaction analysis using families from an early-onset coronary artery disease cohort (GENECARD). This analysis was focused on validating and expanding results from previous studies implicating single nucleotide polymorphisms (SNPs) on chromosome 3 in smoking-mediated coronary artery disease. We analyzed 430 SNPs on chromosome 3 and identified 16 SNPs that showed a gene-smoking interaction at P < 0.05 using association in the presence of linkage--ordered subset analysis, a method that uses permutations of the data to empirically estimate the strength of the association signal. Seven of the 16 SNPs were in the Rho-GTPase pathway indicating a 1.87-fold enrichment for this pathway. A meta-analysis of gene-smoking interactions in three independent studies revealed that rs9289231 in KALRN had a Fisher's combined P value of 0.0017 for the interaction with smoking. In a gene-based meta-analysis KALRN had a P value of 0.026. Finally, a pathway-based analysis of the association results using WebGestalt revealed several enriched pathways including the regulation of the actin cytoskeleton pathway as defined by the Kyoto Encyclopedia of Genes and Genomes.


Subject(s)
Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Gene-Environment Interaction , Smoking/epidemiology , Smoking/genetics , rho GTP-Binding Proteins/genetics , Adult , Age of Onset , Chromosomes, Human, Pair 3 , Cohort Studies , Female , Genetic Linkage , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Signal Transduction/genetics
6.
BMC Genet ; 13: 12, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22369142

ABSTRACT

BACKGROUND: Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas). RESULTS: We identified four genes with SNPs that showed the strongest and most consistent associations with LDL-C and CAD: EBF1, PPP2R2B, SPOCK1, and PRELID2. The most significant results for association of SNPs with LDL-C were: EBF1, rs6865969, p = 0.01; PPP2R2B, rs2125443, p = 0.005; SPOCK1, rs17600115, p = 0.003; and PRELID2, rs10074645, p = 0.0002). The most significant results for CAD were EBF1, rs6865969, p = 0.007; PPP2R2B, rs7736604, p = 0.0003; SPOCK1, rs17170899, p = 0.004; and PRELID2, rs7713855, p = 0.003. CONCLUSION: Using an intermediate disease-related quantitative trait of LDL-C we have identified four novel CAD genes, EBF1, PRELID2, SPOCK1, and PPP2R2B. These four genes should be further examined in future functional studies as candidate susceptibility loci for cardiovascular disease mediated through LDL-cholesterol pathways.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Human, Pair 5 , Coronary Artery Disease/genetics , Genetic Linkage , Lipids/genetics , Atherosclerosis/genetics , Cholesterol, LDL/genetics , Genetic Association Studies , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
7.
Am J Hum Genet ; 75(3): 436-47, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15272420

ABSTRACT

A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.


Subject(s)
Coronary Artery Disease/genetics , Genome, Human , Adult , Age of Onset , Chromosome Mapping , DNA/metabolism , Family Health , Female , Genetic Linkage , Genetic Markers , Genome , Genotype , Humans , Lod Score , Male , Microsatellite Repeats , Middle Aged , Models, Genetic , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...