Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cancer Cell ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029464

ABSTRACT

Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.

2.
Cancer Discov ; 14(5): 804-827, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38386926

ABSTRACT

Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here, we present a preclinical system that recapitulates acquired cross-resistance, developed from 51 patient-derived xenograft (PDX) models. Each model was tested in vivo against three clinical regimens: cisplatin plus etoposide, olaparib plus temozolomide, and topotecan. These drug-response profiles captured hallmark clinical features of SCLC, such as the emergence of treatment-refractory disease after early relapse. For one patient, serial PDX models revealed that cross-resistance was acquired through MYC amplification on extrachromosomal DNA (ecDNA). Genomic and transcriptional profiles of the full PDX panel revealed that MYC paralog amplifications on ecDNAs were recurrent in relapsed cross-resistant SCLC, and this was corroborated in tumor biopsies from relapsed patients. We conclude that ecDNAs with MYC paralogs are recurrent drivers of cross-resistance in SCLC. SIGNIFICANCE: SCLC is initially chemosensitive, but acquired cross-resistance renders this disease refractory to further treatment and ultimately fatal. The genomic drivers of this transformation are unknown. We use a population of PDX models to discover that amplifications of MYC paralogs on ecDNA are recurrent drivers of acquired cross-resistance in SCLC. This article is featured in Selected Articles from This Issue, p. 695.


Subject(s)
Drug Resistance, Neoplasm , Gene Amplification , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Mice , Animals , Proto-Oncogene Proteins c-myc/genetics , Xenograft Model Antitumor Assays
3.
Cell ; 187(1): 14-16, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181738

ABSTRACT

Small cell lung cancer (SCLC) is a recalcitrant malignancy. Conquering it will require deep insight into its biology. In this issue of Cell, Liu and colleagues describe proteomic and phosphoproteomic landscapes of resected SCLC tumors and illustrate the potential of this knowledge to identify new SCLC vulnerabilities.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Proteomics , Knowledge
4.
Sci Adv ; 10(3): eadh2579, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241363

ABSTRACT

Although BRCA1/2 mutations are not commonly found in small cell lung cancer (SCLC), a substantial fraction of SCLC shows clinically relevant response to PARP inhibitors (PARPis). However, the underlying mechanism(s) of PARPi sensitivity in SCLC is poorly understood. We performed quantitative proteomic analyses and identified proteomic changes that signify PARPi responses in SCLC cells. We found that the vulnerability of SCLC to PARPi could be explained by the degradation of lineage-specific oncoproteins (e.g., ASCL1). PARPi-induced activation of the E3 ligase HUWE1 mediated the ubiquitin-proteasome system (UPS)-dependent ASCL1 degradation. Although PARPi induced a general DNA damage response in SCLC cells, this signal generated a cell-specific response in ASCL1 degradation, leading to the identification of HUWE1 expression as a predictive biomarker for PARPi. Combining PARPi with agents targeting these pathways markedly improved therapeutic response in SCLC. The degradation of lineage-specific oncoproteins therefore represents a previously unidentified mechanism for PARPi efficacy in SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , BRCA1 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proteomics , BRCA2 Protein/genetics , Oncogene Proteins , Cell Line, Tumor , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/genetics
5.
Nat Commun ; 15(1): 672, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253555

ABSTRACT

There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.


Subject(s)
Deoxyguanosine/analogs & derivatives , Lung Neoplasms , Small Cell Lung Carcinoma , Telomerase , Thionucleosides , Humans , Animals , Mice , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/drug therapy , Drug Delivery Systems , Telomere
6.
Cancer Cell ; 41(9): 1535-1540, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37699331

ABSTRACT

The understanding of small cell lung cancer (SCLC) biology has increased dramatically in recent years, but the processes that allow SCLC to progress rapidly remain poorly understood. Here, we advocate the integration of rapid autopsies and preclinical models into SCLC research as a comprehensive strategy with the potential to revolutionize current treatment paradigms.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Autopsy , Small Cell Lung Carcinoma/genetics , Lung Neoplasms/genetics
7.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425738

ABSTRACT

Small cell lung cancer (SCLC) presents as a highly chemosensitive malignancy but acquires cross-resistance after relapse. This transformation is nearly inevitable in patients but has been difficult to capture in laboratory models. Here we present a pre-clinical system that recapitulates acquired cross-resistance in SCLC, developed from 51 patient-derived xenografts (PDXs). Each model was tested for in vivo sensitivity to three clinical regimens: cisplatin plus etoposide, olaparib plus temozolomide, and topotecan. These functional profiles captured hallmark clinical features, such as the emergence of treatment-refractory disease after early relapse. Serially derived PDX models from the same patient revealed that cross-resistance was acquired through a MYC amplification on extrachromosomal DNA (ecDNA). Genomic and transcriptional profiles of the full PDX panel revealed that this was not unique to one patient, as MYC paralog amplifications on ecDNAs were recurrent among cross-resistant models derived from patients after relapse. We conclude that ecDNAs with MYC paralogs are recurrent drivers of cross-resistance in SCLC. SIGNIFICANCE: SCLC is initially chemosensitive, but acquired cross-resistance renders this disease refractory to further treatment and ultimately fatal. The genomic drivers of this transformation are unknown. We use a population of PDX models to discover that amplifications of MYC paralogs on ecDNA are recurrent drivers of acquired cross-resistance in SCLC.

8.
Mol Cell ; 82(18): 3333-3349.e9, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35981542

ABSTRACT

The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.


Subject(s)
Chromatin , Retinoblastoma Protein , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Promoter Regions, Genetic , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Transcription Factor AP-1/genetics
9.
Sci Adv ; 8(19): eabn1229, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35559669

ABSTRACT

In small cell lung cancer (SCLC), acquired resistance to DNA-damaging therapy is challenging to study because rebiopsy is rarely performed. We used patient-derived xenograft models, established before therapy and after progression, to dissect acquired resistance to olaparib plus temozolomide (OT), a promising experimental therapy for relapsed SCLC. These pairs of serial models reveal alterations in both cell cycle kinetics and DNA replication and demonstrate both inter- and intratumoral heterogeneity in mechanisms of resistance. In one model pair, up-regulation of translesion DNA synthesis (TLS) enabled tolerance of OT-induced damage during DNA replication. TLS inhibitors restored sensitivity to OT both in vitro and in vivo, and similar synergistic effects were seen in additional SCLC cell lines. This represents the first described mechanism of acquired resistance to DNA damage in a patient with SCLC and highlights the potential of the serial model approach to investigate and overcome resistance to therapy in SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Cell Line, Tumor , DNA , DNA Damage , DNA Replication , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Phthalazines , Piperazines , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Temozolomide/pharmacology
10.
Elife ; 102021 08 04.
Article in English | MEDLINE | ID: mdl-34346867

ABSTRACT

Changes in MAPK signaling allow lung cancer cells to transition between lineages that respond differently to treatment.


Subject(s)
Lung Neoplasms , MAP Kinase Signaling System , Humans , Lung , Lung Neoplasms/genetics
11.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34415995

ABSTRACT

T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.


Subject(s)
Immunotherapy/methods , Rhabdomyosarcoma/therapy , Single-Cell Analysis/methods , Xenograft Model Antitumor Assays/methods , Zebrafish/genetics , Adolescent , Adult , Animals , Animals, Genetically Modified , Child , Child, Preschool , DNA-Binding Proteins/genetics , ErbB Receptors/immunology , Female , Humans , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit/genetics , Male , Mice, Inbred Strains , Phthalazines/pharmacology , Piperazines/pharmacology , Rhabdomyosarcoma/pathology , T-Lymphocytes/immunology , Temozolomide/pharmacology , Tumor Cells, Cultured , Zebrafish Proteins/genetics
12.
Cancer Cell ; 39(4): 453-456, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33848475

ABSTRACT

Small-cell lung cancer (SCLC) is initially sensitive to platinum doublet chemotherapy, providing dramatic clinical benefit. Unfortunately, most SCLCs relapse and become resistant to further therapy. In this issue of Cancer Cell, Thomas et al. show that some platinum-resistant SCLCs benefit from combination therapy with topotecan plus the ATR (ataxia telangiectasia-mutated and rad3-related) inhibitor berzosertib.


Subject(s)
Lung Neoplasms , Platinum , Antineoplastic Combined Chemotherapy Protocols , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Platinum/therapeutic use , Topotecan/therapeutic use
13.
Article in English | MEDLINE | ID: mdl-32513672

ABSTRACT

Over the past several years, we have witnessed a resurgence of interest in the biology and therapeutic vulnerabilities of small-cell lung cancer (SCLC). This has been driven in part through the development of a more extensive array of representative models of disease, including a diverse variety of genetically engineered mouse models and human tumor xenografts. Herein, we review recent progress in SCLC model development, and consider some of the particularly active avenues of translational research in SCLC, including interrogation of intratumoral heterogeneity, insights into the cell of origin and oncogenic drivers, mechanisms of chemoresistance, and new therapeutic opportunities including biomarker-directed targeted therapies and immunotherapies. Whereas SCLC remains a highly lethal disease, these new avenues of translational research, bringing together mechanism-based preclinical and clinical research, offer new hope for patients with SCLC.


Subject(s)
Lung Neoplasms/genetics , Small Cell Lung Carcinoma/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mutation , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Translational Research, Biomedical , Whole Genome Sequencing
14.
Cancer Cell ; 38(2): 150-152, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32781039

ABSTRACT

The development and consequences of lineage plasticity during tumorigenesis have remained mysterious due to the limits of single-cell analysis. In this issue of Cancer Cell, LaFave et al. and Marjanovic et al. identify highly plastic subpopulations within lung adenocarcinoma that may underlie intratumoral lineage heterogeneity, metastasis, and acquired resistance to chemotherapy.


Subject(s)
Lung Neoplasms , Adenocarcinoma of Lung/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics
15.
Sci Transl Med ; 11(517)2019 11 06.
Article in English | MEDLINE | ID: mdl-31694929

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode "druggable" proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.


Subject(s)
Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Molecular Targeted Therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/enzymology , Adenocarcinoma/drug therapy , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Animals , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DCMP Deaminase/metabolism , Dihydroorotate Dehydrogenase , Disease Progression , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Lung Neoplasms/pathology , Mice , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pancreatic Neoplasms/metabolism , Pyrimidines/biosynthesis , Small Cell Lung Carcinoma/pathology , Survival Analysis , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
16.
Cancer Discov ; 9(10): 1372-1387, 2019 10.
Article in English | MEDLINE | ID: mdl-31416802

ABSTRACT

Small-cell lung cancer (SCLC) is an aggressive malignancy in which inhibitors of PARP have modest single-agent activity. We performed a phase I/II trial of combination olaparib tablets and temozolomide (OT) in patients with previously treated SCLC. We established a recommended phase II dose of olaparib 200 mg orally twice daily with temozolomide 75 mg/m2 daily, both on days 1 to 7 of a 21-day cycle, and expanded to a total of 50 patients. The confirmed overall response rate was 41.7% (20/48 evaluable); median progression-free survival was 4.2 months [95% confidence interval (CI), 2.8-5.7]; and median overall survival was 8.5 months (95% CI, 5.1-11.3). Patient-derived xenografts (PDX) from trial patients recapitulated clinical OT responses, enabling a 32-PDX coclinical trial. This revealed a correlation between low basal expression of inflammatory-response genes and cross-resistance to both OT and standard first-line chemotherapy (etoposide/platinum). These results demonstrate a promising new therapeutic strategy in SCLC and uncover a molecular signature of those tumors most likely to respond. SIGNIFICANCE: We demonstrate substantial clinical activity of combination olaparib/temozolomide in relapsed SCLC, revealing a promising new therapeutic strategy for this highly recalcitrant malignancy. Through an integrated coclinical trial in PDXs, we then identify a molecular signature predictive of response to OT, and describe the common molecular features of cross-resistant SCLC.See related commentary by Pacheco and Byers, p. 1340.This article is highlighted in the In This Issue feature, p. 1325.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Computational Biology/methods , Drug Resistance, Neoplasm , Female , Humans , Lung Neoplasms/etiology , Lung Neoplasms/mortality , Male , Mice , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Phthalazines/administration & dosage , Piperazines/administration & dosage , Small Cell Lung Carcinoma/etiology , Small Cell Lung Carcinoma/mortality , Temozolomide/administration & dosage , Transcriptome , Treatment Outcome , Xenograft Model Antitumor Assays
17.
Nat Commun ; 10(1): 2854, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253781

ABSTRACT

SETD1A, a Set1/COMPASS family member maintaining histone-H3-lysine-4 (H3K4) methylation on transcriptionally active promoters, is overexpressed in breast cancer. Here, we show that SETD1A supports mitotic processes and consequentially, its knockdown induces senescence. SETD1A, through promoter H3K4 methylation, regulates several genes orchestrating mitosis and DNA-damage responses, and its depletion causes chromosome misalignment and segregation defects. Cell cycle arrest in SETD1A knockdown senescent cells is independent of mutations in p53, RB and p16, known senescence mediators; instead, it is sustained through transcriptional suppression of SKP2, which degrades p27 and p21. Rare cells escaping senescence by restoring SKP2 expression display genomic instability. In > 200 cancer cell lines and in primary circulating tumor cells, SETD1A expression correlates with genes promoting mitosis and cell cycle suggesting a broad role in suppressing senescence induced by aberrant mitosis. Thus, SETD1A is essential to maintain mitosis and proliferation and its suppression unleashes the tumor suppressive effects of senescence.


Subject(s)
Cellular Senescence/physiology , Gene Expression Regulation/physiology , Histone-Lysine N-Methyltransferase/metabolism , Mitosis/physiology , Cell Line, Tumor , Histone-Lysine N-Methyltransferase/genetics , Histones , Humans , Methylation , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
18.
Trends Pharmacol Sci ; 40(5): 295-297, 2019 05.
Article in English | MEDLINE | ID: mdl-30975441

ABSTRACT

DNA damage repair (DDR) inhibition and immune checkpoint blockade (ICB) have each individually shown modest clinical activity in small cell lung cancer (SCLC). Recently, Sen and colleagues (Cancer Discov. 2019;https://doi.org/10.1158/2159-8290.CD-18-1020) demonstrated that DDR inhibition can activate the stimulator of interferon genes (STING) innate immune pathway, providing strong rationale for combining DDR inhibition and ICB to treat SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , DNA Damage , DNA Repair , Humans , T-Lymphocytes
19.
Cell ; 177(7): 1903-1914.e14, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31031007

ABSTRACT

Xenograft cell transplantation into immunodeficient mice has become the gold standard for assessing pre-clinical efficacy of cancer drugs, yet direct visualization of single-cell phenotypes is difficult. Here, we report an optically-clear prkdc-/-, il2rga-/- zebrafish that lacks adaptive and natural killer immune cells, can engraft a wide array of human cancers at 37°C, and permits the dynamic visualization of single engrafted cells. For example, photoconversion cell-lineage tracing identified migratory and proliferative cell states in human rhabdomyosarcoma, a pediatric cancer of muscle. Additional experiments identified the preclinical efficacy of combination olaparib PARP inhibitor and temozolomide DNA-damaging agent as an effective therapy for rhabdomyosarcoma and visualized therapeutic responses using a four-color FUCCI cell-cycle fluorescent reporter. These experiments identified that combination treatment arrested rhabdomyosarcoma cells in the G2 cell cycle prior to induction of apoptosis. Finally, patient-derived xenografts could be engrafted into our model, opening new avenues for developing personalized therapeutic approaches in the future.


Subject(s)
Animals, Genetically Modified/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Muscle Neoplasms , Rhabdomyosarcoma , Zebrafish/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/immunology , Female , Heterografts , Humans , K562 Cells , Male , Muscle Neoplasms/drug therapy , Muscle Neoplasms/immunology , Muscle Neoplasms/metabolism , Muscle Neoplasms/pathology , Neoplasm Transplantation , Phthalazines/pharmacology , Piperazines/pharmacology , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/immunology , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Temozolomide/pharmacology , Xenograft Model Antitumor Assays , Zebrafish/genetics , Zebrafish/immunology
20.
Future Oncol ; 15(3): 231-239, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30362375

ABSTRACT

Lurbinectedin is an inhibitor of active transcription of protein-coding genes, causing DNA-break accumulation, apoptosis and modulation of the tumor microenvironment. Early-phase clinical trials indicate promising activity of lurbinectedin in small-cell lung cancer. Here, we describe the rationale and design of ATLANTIS (NCT02566993), an open-label, randomized, multicenter Phase III study to compare the efficacy of lurbinectedin and doxorubicin combination with standard-of-care chemotherapy, investigator's choice of cyclophosphamide/doxorubicin/vincristine or topotecan, in patients with small-cell lung cancer that has progressed following one line of platinum-based chemotherapy. Patients are randomized in a 1:1 ratio. The primary end point is overall survival and key secondary end points include progression-free survival, best tumor response and duration of response, each assessed by independent review committee.


Subject(s)
Carbolines/administration & dosage , Doxorubicin/administration & dosage , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Small Cell Lung Carcinoma/drug therapy , Tumor Microenvironment/drug effects , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Cyclophosphamide/administration & dosage , Female , Humans , Male , Middle Aged , Platinum/administration & dosage , Platinum/adverse effects , Progression-Free Survival , Small Cell Lung Carcinoma/pathology , Topotecan/administration & dosage , Vincristine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL