Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Phys ; 126(8): 084307, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17343448

ABSTRACT

We report the femtosecond nuclear dynamics of Cu(CD3OD) van der Waals clusters, investigated using photodetachment-photoionization spectroscopy. Photodetachment of an electron from Cu-(CD3OD) with a 150 fs, 398 nm laser pulse produces a vibrationally excited neutral complex that undergoes ligand reorientation and dissociation. The dynamics of Cu(CD3OD) on the neutral surface is interrogated by delayed femtosecond resonant two-photon ionization. Analysis of the resulting time-dependent signals indicates that the nascent Cu(CD3OD) complex dissociates on two distinct time scales of 3 and 30 ps. To understand the origins of the observed time scales, complimentary studies were performed. These included measurement of the photoelectron spectrum of Cu-(CD3OD) as well as a series of calculations of the structure and the electronic and vibrational energies of the anion and neutral complexes. Based on the comparisons of the experimental and calculated results for Cu(CD3OD) with those obtained from earlier studies of Cu(H2O), we conclude that the 3 ps time scale reflects the energy transfer from the rotation of CD3OD in the complex to the dissociation coordinate, while the 30 ps time scale reflects the energy transfer from the excited methyl torsion states to the dissociation coordinate.

2.
J Chem Phys ; 125(13): 133405, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029479

ABSTRACT

We report the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5-10) clusters following excitation to the dissociative IBr-A' 2Pi12 state of the chromophore via a 180 fs, 795 nm laser pulse. Dissociation from the A' state of the bare anion results in I- and Br products. Upon solvation with CO2, the IBr- chromophore regains near-IR absorption only after recombination and vibrational relaxation on the ground electronic state. The recombination time was determined by using a delayed femtosecond probe laser, at the same wavelength as the pump, and detecting ionic photoproducts of the recombined IBr- cluster ions. In sharp contrast to previous studies involving solvated I2-, the observed recombination times for IBr-(CO2)n increase dramatically with increasing cluster size, from 12 ps for n = 5 to 900 ps for n = 8,10. The nanosecond recombination times are especially surprising in that the overall recombination probability for these cluster ions is unity. Over the range of 5-10 solvent molecules, calculations show that the solvent is very asymmetrically distributed, localized around the Br end of the IBr- chromophore. It is proposed that this asymmetric solvation delays the recombination of the dissociating IBr-, in part through a solvent-induced well in the A' state that (for n = 8,10) traps the evolving complex. Extensive electronic structure calculations and nonadiabatic molecular dynamics simulations provide a framework to understand this unexpected behavior.

SELECTION OF CITATIONS
SEARCH DETAIL