Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37873231

ABSTRACT

DNA methylation plays a key role in epigenetics, with 60-80% of CpG sites containing 5-methylcytosine. Base excision repair (BER) is suggested to be the main pathway involved in active DNA demethylation. 5-formylctyosine (5fC), an oxidized moiety of methylated cytosine, is recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. TDG binds avidly to abasic sites and is product inhibited. Using single molecule fluorescence experiments, we saw TDG interact with DNA containing 5fC specifically and non-specifically with lifetimes of 72.9 and 7.5 seconds, respectively. These results indicate that TDG cleaves the 5fC and stays bound for an extended time at the generated abasic site. Mean squared displacement analysis and a two color TDG experiment indicate that TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of a lesion. The catalytically crippled variants, N140A and R275A/L, have a reduced binding lifetime compared to wild type and Mean Squared Displacement (MSD) analysis indicates that R275L/A moves on the DNA with a faster diffusivity. These results indicate that mutating R275, but not N140 interferes with damage recognition by TDG. Our findings give insight into how TDG searches for its lesions in long stretches of undamaged DNA.

2.
PLoS One ; 18(1): e0280526, 2023.
Article in English | MEDLINE | ID: mdl-36652434

ABSTRACT

AP endonuclease 1 (APE1) processes DNA lesions including apurinic/apyrimidinic sites and 3´-blocking groups, mediating base excision repair and single strand break repair. Much effort has focused on developing specific inhibitors of APE1, which could have important applications in basic research and potentially lead to clinical anticancer agents. We used structural, biophysical, and biochemical methods to characterize several reported inhibitors, including 7-nitroindole-2-carboxylic acid (CRT0044876), given its small size, reported potency, and widespread use for studying APE1. Intriguingly, NMR chemical shift perturbation (CSP) experiments show that CRT0044876 and three similar indole-2-carboxylic acids bind a pocket distal from the APE1 active site. A crystal structure confirms these findings and defines the pose for 5-nitroindole-2-carboxylic acid. However, dynamic light scattering experiments show the indole compounds form colloidal aggregates that could bind (sequester) APE1, causing nonspecific inhibition. Endonuclease assays show the compounds lack significant APE1 inhibition under conditions (detergent) that disrupt aggregation. Thus, binding of the indole-2-carboxylic acids at the remote pocket does not inhibit APE1 repair activity. Myricetin also forms aggregates and lacks APE1 inhibition under aggregate-disrupting conditions. Two other reported compounds (MLS000552981, MLS000419194) inhibit APE1 in vitro with low micromolar IC50 and do not appear to aggregate in this concentration range. However, NMR CSP experiments indicate the compounds do not bind specifically to apo- or Mg2+-bound APE1, pointing to a non-specific mode of inhibition, possibly DNA binding. Our results highlight methods for rigorous interrogation of putative APE1 inhibitors and should facilitate future efforts to discover compounds that specifically inhibit this important repair enzyme.


Subject(s)
Antineoplastic Agents , DNA-(Apurinic or Apyrimidinic Site) Lyase , Humans , Antineoplastic Agents/pharmacology , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Indoles/pharmacology
3.
J Biol Chem ; 299(1): 102756, 2023 01.
Article in English | MEDLINE | ID: mdl-36460098

ABSTRACT

Oxidation of DNA bases generates mutagenic and cytotoxic lesions that are implicated in cancer and other diseases. Oxidative base lesions, including 7,8-dihydro-8-oxoguanine, are typically removed through base excision repair. In addition, oxidized deoxynucleotides such as 8-oxo-dGTP are depleted by sanitizing enzymes to preclude DNA incorporation. While pathways that counter threats posed by 7,8-dihydro-8-oxoguanine are well characterized, mechanisms protecting against the major adenine oxidation product, 7,8-dihydro-8-oxoadenine (oxoA), are poorly understood. Human DNA polymerases incorporate dGTP or dCTP opposite oxoA, producing mispairs that can cause A→C or A→G mutations. oxoA also perturbs the activity of enzymes acting on DNA and causes interstrand crosslinks. To inform mechanisms for oxoA repair, we characterized oxoA excision by human thymine DNA glycosylase (TDG), an enzyme known to remove modified pyrimidines, including deaminated and oxidized forms of cytosine and 5-methylcystosine. Strikingly, TDG excises oxoA from G⋅oxoA, A⋅oxoA, or C⋅oxoA pairs much more rapidly than it acts on the established pyrimidine substrates, whereas it exhibits comparable activity for T⋅oxoA and pyrimidine substrates. The oxoA activity depends strongly on base pairing and is 370-fold higher for G⋅oxoA versus T⋅oxoA pairs. The intrinsically disordered regions of TDG contribute minimally to oxoA excision, whereas two conserved residues (N140 and N191) are catalytically essential. Escherichia coli mismatch-specific uracil DNA-glycosylase lacks significant oxoA activity, exhibiting excision rates 4 to 5 orders of magnitude below that of its ortholog, TDG. Our results reveal oxoA as an unexpectedly efficient purine substrate for TDG and underscore the large evolutionary divergence of TDG and mismatch-specific uracil DNA-glycosylase.


Subject(s)
Thymine DNA Glycosylase , Humans , Thymine DNA Glycosylase/metabolism , DNA Repair , Adenine/metabolism , DNA/metabolism , Escherichia coli/metabolism , Uracil/metabolism , Thymine , Substrate Specificity
4.
J Mol Biol ; 433(15): 167097, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34107280

ABSTRACT

DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2'-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.


Subject(s)
DNA/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Pseudouridine/analogs & derivatives , Catalytic Domain , Crystallography, X-Ray , DNA/chemistry , Endodeoxyribonucleases/genetics , Epigenesis, Genetic , Humans , Models, Molecular , Mutation , Protein Conformation
5.
J Mol Biol ; 433(8): 166877, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33561435

ABSTRACT

In mammalian genomes, cytosine methylation occurs predominantly at CG (or CpG) dinucleotide contexts. As part of dynamic epigenetic regulation, 5-methylcytosine (mC) can be erased by active DNA demethylation, whereby ten-eleven translocation (TET) enzymes catalyze the stepwise oxidation of mC to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), thymine DNA glycosylase (TDG) excises fC or caC, and base excision repair yields unmodified cytosine. In certain cell types, mC is also enriched at some non-CG (or CH) dinucleotides, however hmC is not. To provide biochemical context for the distribution of modified cytosines observed in biological systems, we systematically analyzed the activity of human TET2 and TDG for substrates in CG and CH contexts. We find that while TET2 oxidizes mC more efficiently in CG versus CH sites, this context preference can be diminished for hmC oxidation. Remarkably, TDG excision of fC and caC is only modestly dependent on CG context, contrasting its strong context dependence for thymine excision. We show that collaborative TET-TDG oxidation-excision activity is only marginally reduced for CA versus CG contexts. Our findings demonstrate that the TET-TDG-mediated demethylation pathway is not limited to CG sites and suggest a rationale for the depletion of hmCH in genomes rich in mCH.


Subject(s)
CpG Islands , DNA Demethylation , Thymine DNA Glycosylase/chemistry , Thymine DNA Glycosylase/metabolism , 5-Methylcytosine/analogs & derivatives , Cytosine/analogs & derivatives , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Dioxygenases , Epigenesis, Genetic , Humans , Oxidation-Reduction , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Thymine DNA Glycosylase/genetics
6.
J Am Chem Soc ; 141(47): 18851-18861, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31693361

ABSTRACT

5-Methylcytosine (mC) is an epigenetic mark that is written by methyltransferases, erased through passive and active mechanisms, and impacts transcription, development, diseases including cancer, and aging. Active DNA demethylation involves TET-mediated stepwise oxidation of mC to 5-hydroxymethylcytosine, 5-formylcytosine (fC), or 5-carboxylcytosine (caC), excision of fC or caC by thymine DNA glycosylase (TDG), and subsequent base excision repair. Many elements of this essential process are poorly defined, including TDG excision of caC. To address this problem, we solved high-resolution structures of human TDG bound to DNA with cadC (5-carboxyl-2'-deoxycytidine) flipped into its active site. The structures unveil detailed enzyme-substrate interactions that mediate recognition and removal of caC, many involving water molecules. Importantly, two water molecules contact a carboxylate oxygen of caC and are poised to facilitate acid-catalyzed caC excision. Moreover, a substrate-dependent conformational change in TDG modulates the hydrogen bond interactions for one of these waters, enabling productive interaction with caC. An Asn residue (N191) that is critical for caC excision is found to contact N3 and N4 of caC, suggesting a mechanism for acid-catalyzed base excision that features an N3-protonated form of caC but would be ineffective for C, mC, or hmC. We also investigated another Asn residue (N140) that is catalytically essential and strictly conserved in the TDG-MUG enzyme family. A structure of N140A-TDG bound to cadC DNA provides the first high-resolution insight into how enzyme-substrate interactions, including water molecules, are impacted by depleting the conserved Asn, informing its role in binding and addition of the nucleophilic water molecule.


Subject(s)
Cytosine/analogs & derivatives , Thymine DNA Glycosylase/metabolism , Cytosine/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Thymine DNA Glycosylase/chemistry
7.
J Am Chem Soc ; 141(12): 4952-4962, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30841696

ABSTRACT

A broad range of proteins employ nucleotide flipping to recognize specific sites in nucleic acids, including DNA glycosylases, which remove modified nucleobases to initiate base excision repair. Deamination, a pervasive mode of damage, typically generates lesions that are recognized by glycosylases as being foreign to DNA. However, deamination of 5-methylcytosine (mC) generates thymine, a canonical DNA base, presenting a challenge for damage recognition. Nevertheless, repair of mC deamination is important because the resulting G·T mispairs cause C → T transition mutations, and mC is abundant in all three domains of life. Countering this threat are three types of glycosylases that excise thymine from G·T mispairs, including thymine DNA glycosylase (TDG). These enzymes must minimize excision of thymine that is not generated by mC deamination, in A·T pairs and in polymerase-generated G·T mispairs. TDG preferentially removes thymine from DNA contexts in which cytosine methylation is prevalent, including CG and one non-CG site. This remarkable context specificity could be attained through modulation of nucleotide flipping, a reversible step that precedes base excision. We tested this idea using fluorine NMR and DNA containing 2'-fluoro-substituted nucleotides. We find that dT nucleotide flipping depends on DNA context and is efficient only in contexts known to feature cytosine methylation. We also show that a conserved Ala residue limits thymine excision by hindering nucleotide flipping. A linear free energy correlation reveals that TDG attains context specificity for thymine excision through modulation of nucleotide flipping. Our results provide a framework for characterizing nucleotide flipping in nucleic acids using 19F NMR.


Subject(s)
DNA Glycosylases/metabolism , Magnetic Resonance Spectroscopy , Nucleotides/metabolism , DNA/chemistry , DNA/metabolism , DNA Glycosylases/chemistry , Kinetics , Models, Molecular , Nucleic Acid Conformation , Protein Conformation , Substrate Specificity , Thymine/metabolism
8.
DNA Repair (Amst) ; 72: 56-63, 2018 12.
Article in English | MEDLINE | ID: mdl-30268365

ABSTRACT

Human cells express the UDG superfamily of glycosylases, which excise uracil (U) from the genome. The three members of this structural superfamily are uracil DNA glycosylase (UNG/UDG), single-strand selective monofunctional uracil DNA glycosylase (SMUG1), and thymine DNA glycosylase (TDG). We previously reported that UDG is efficient at removing U from DNA packaged into nucleosome core particles (NCP) and is minimally affected by the histone proteins when acting on an outward-facing U in the dyad region. In an effort to determine whether this high activity is a general property of the UDG superfamily of glycosylases, we compare the activity of UDG, SMUG1, and TDG on a U:G wobble base pair using NCP assembled from Xenopus laevis histones and the Widom 601 positioning sequence. We found that while UDG is highly active, SMUG1 is severely inhibited on NCP and this inhibition is independent of sequence context. Here we also provide the first report of TDG activity on an NCP, and found that TDG has an intermediate level of activity in excision of U and is severely inhibited in its excision of T. These results are discussed in the context of cellular roles for each of these enzymes.


Subject(s)
Gene Expression Regulation, Enzymologic , Nucleosomes/metabolism , Uracil-DNA Glycosidase/metabolism , Animals , DNA Repair , Humans , Kinetics , Models, Molecular , Protein Conformation , Thymine DNA Glycosylase/metabolism , Uracil/metabolism , Uracil-DNA Glycosidase/chemistry , Xenopus laevis
9.
Nucleic Acids Res ; 46(10): 5159-5170, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29660017

ABSTRACT

Thymine DNA glycosylase (TDG) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC) and it removes two mC derivatives, 5-formylcytosine (fC) and 5-carboxylcytosine (caC), in a multistep pathway for DNA demethylation. TDG is modified by small ubiquitin-like modifier (SUMO) proteins, but the impact of sumoylation on TDG activity is poorly defined and the functions of TDG sumoylation remain unclear. We determined the effect of TDG sumoylation, by SUMO-1 or SUMO-2, on substrate binding and catalytic parameters. Single turnover experiments reveal that sumoylation dramatically impairs TDG base-excision activity, such that G·T activity is reduced by ≥45-fold and fC and caC are excised slowly, with a reaction half-life of ≥9 min (37°C). Fluorescence anisotropy studies reveal that unmodified TDG binds tightly to G·fC and G·caC substrates, with dissociation constants in the low nanomolar range. While sumoylation of TDG weakens substrate binding, the residual affinity is substantial and is comparable to that of biochemically-characterized readers of fC and caC. Our findings raise the possibility that sumoylation enables TDG to function, at least transiently, as reader of fC and caC. Notably, sumoylation could potentially facilitate TDG recruitment of other proteins, including transcription factors or epigenetic regulators, to these sites in DNA.


Subject(s)
Thymine DNA Glycosylase/metabolism , Catalysis , Cytosine/analogs & derivatives , Cytosine/metabolism , Fluorescence Polarization , Humans , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Thymine DNA Glycosylase/chemistry , Thymine DNA Glycosylase/genetics
10.
Methods Enzymol ; 592: 357-376, 2017.
Article in English | MEDLINE | ID: mdl-28668127

ABSTRACT

Base excision repair (BER) is a conserved and ubiquitous pathway that is initiated by DNA glycosylases, which recognize and remove damaged or mismatched nucleobases, setting the stage for restoration of the correct DNA sequence by follow-on BER enzymes. DNA glycosylases employ a nucleotide-flipping step prior to cleavage of the N-glycosyl bond, and most exhibit slow release of the abasic DNA product and/or strong product inhibition. As such, studying the catalytic mechanism of these enzymes requires care in the design, execution, and interpretation of single- and multiple-turnover kinetics experiments, which is the topic of this chapter.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , Enzyme Assays/methods , Animals , DNA Damage , Humans , Kinetics
11.
Biochemistry ; 55(45): 6205-6208, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27805810

ABSTRACT

Thymine DNA glycosylase (TDG) is a base excision repair enzyme with key functions in epigenetic regulation. Performing a critical step in a pathway for active DNA demethylation, TDG removes 5-formylcytosine and 5-carboxylcytosine, oxidized derivatives of 5-methylcytosine that are generated by TET (ten-eleven translocation) enzymes. We determined a crystal structure of TDG bound to DNA with a noncleavable (2'-fluoroarabino) analogue of 5-formyldeoxycytidine flipped into its active site, revealing how it recognizes and hydrolytically excises fC. Together with previous structural and biochemical findings, the results illustrate how TDG employs an adaptable active site to excise a broad variety of nucleobases from DNA.


Subject(s)
Cytosine/analogs & derivatives , DNA/metabolism , Thymine DNA Glycosylase/metabolism , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , Catalytic Domain , Crystallography, X-Ray , Cytosine/chemistry , Cytosine/metabolism , DNA/chemistry , DNA/genetics , DNA Methylation , DNA Repair , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism , Oxidation-Reduction , Protein Binding , Protein Domains , Substrate Specificity , Thymine DNA Glycosylase/chemistry
12.
Cell ; 167(2): 498-511.e14, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27693351

ABSTRACT

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , N-Glycosyl Hydrolases/metabolism , Animals , Cell-Free System/chemistry , Cross-Linking Reagents/chemistry , DNA/biosynthesis , DNA/chemistry , Fanconi Anemia Complementation Group D2 Protein/chemistry , Fanconi Anemia Complementation Group Proteins/chemistry , Ficusin/chemistry , N-Glycosyl Hydrolases/chemistry , Xenopus laevis
13.
Nucleic Acids Res ; 44(21): 10248-10258, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27580719

ABSTRACT

Thymine DNA Glycosylase (TDG) is a base excision repair enzyme functioning in DNA repair and epigenetic regulation. TDG removes thymine from mutagenic G·T mispairs arising from deamination of 5-methylcytosine (mC), and it processes other deamination-derived lesions including uracil (U). Essential for DNA demethylation, TDG excises 5-formylcytosine and 5-carboxylcytosine, derivatives of mC generated by Tet (ten-eleven translocation) enzymes. Here, we report structural and functional studies of TDG82-308, a new construct containing 29 more N-terminal residues than TDG111-308, the construct used for previous structures of DNA-bound TDG. Crystal structures and NMR experiments demonstrate that most of these N-terminal residues are disordered, for substrate- or product-bound TDG82-308 Nevertheless, G·T substrate affinity and glycosylase activity of TDG82-308 greatly exceeds that of TDG111-308 and is equivalent to full-length TDG. We report the first high-resolution structures of TDG in an enzyme-substrate complex, for G·U bound to TDG82-308 (1.54 Å) and TDG111-308 (1.71 Å), revealing new enzyme-substrate contacts, direct and water-mediated. We also report a structure of the TDG82-308 product complex (1.70 Å). TDG82-308 forms unique enzyme-DNA interactions, supporting its value for structure-function studies. The results advance understanding of how TDG recognizes and removes modified bases from DNA, particularly those resulting from deamination.


Subject(s)
DNA Damage , DNA/chemistry , DNA/metabolism , Thymine DNA Glycosylase/chemistry , Thymine DNA Glycosylase/metabolism , Amino Acid Sequence , Binding Sites , DNA/genetics , Enzyme Activation , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins , Structure-Activity Relationship , Substrate Specificity
14.
Chem Rev ; 116(20): 12711-12729, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27501078

ABSTRACT

Base excision repair (BER) is one of several DNA repair pathways found in all three domains of life. BER counters the mutagenic and cytotoxic effects of damage that occurs continuously to the nitrogenous bases in DNA, and its critical role in maintaining genomic integrity is well established. However, BER also performs essential functions in processes other than DNA repair, where it acts on naturally modified bases in DNA. A prominent example is the central role of BER in mediating active DNA demethylation, a multistep process that erases the epigenetic mark 5-methylcytosine (5mC), and derivatives thereof, converting them back to cytosine. Herein, we review recent advances in the understanding of how BER mediates this critical component of epigenetic regulation in plants and animals.


Subject(s)
DNA Repair , DNA/genetics , Epigenesis, Genetic , Animals , DNA Methylation , DNA, Plant/genetics , Plants/genetics , Vertebrates/genetics
15.
J Biol Chem ; 291(17): 9014-24, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26917720

ABSTRACT

Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo.


Subject(s)
Cytosine/analogs & derivatives , DNA Methylation/physiology , Mutation , SUMO-1 Protein/metabolism , Sumoylation/physiology , Thymine DNA Glycosylase/metabolism , Cytosine/metabolism , HEK293 Cells , Humans , SUMO-1 Protein/genetics , Thymine DNA Glycosylase/genetics
16.
Nucleic Acids Res ; 43(19): 9541-52, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26358812

ABSTRACT

Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G ·: T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten-eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme-product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme-substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme-product complex.


Subject(s)
Base Pair Mismatch , DNA/chemistry , Thymine DNA Glycosylase/chemistry , Catalytic Domain , Crystallography, X-Ray , DNA/metabolism , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Pentoxyl/analogs & derivatives , Pentoxyl/chemistry , Pentoxyl/metabolism , Protein Binding , Thymine/metabolism , Thymine DNA Glycosylase/metabolism , Uracil/metabolism
17.
DNA Repair (Amst) ; 32: 33-42, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26021671

ABSTRACT

Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G · T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.


Subject(s)
CpG Islands , DNA Repair , DNA/metabolism , Endodeoxyribonucleases/chemistry , Epigenesis, Genetic , Thymine DNA Glycosylase/chemistry , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , DNA/chemistry , DNA Methylation , Deamination , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Humans , Models, Molecular , Oxidation-Reduction , Protein Structure, Secondary , Protein Structure, Tertiary , Thymine DNA Glycosylase/genetics , Thymine DNA Glycosylase/metabolism
18.
Nucleic Acids Res ; 43(5): 2716-29, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25712093

ABSTRACT

The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG-DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , DNA Repair , DNA/metabolism , Thymine DNA Glycosylase/metabolism , 2-Aminopurine/metabolism , DNA/chemistry , DNA/genetics , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Microscopy, Atomic Force , Mutation , Nucleic Acid Conformation , Substrate Specificity
19.
Org Biomol Chem ; 12(42): 8367-78, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25181003

ABSTRACT

DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes.


Subject(s)
DNA Glycosylases/metabolism , DNA/metabolism , Animals , DNA/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/metabolism , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Humans , Hydrolysis , Purines/chemistry , Purines/metabolism
20.
J Biol Chem ; 289(22): 15810-9, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24753249

ABSTRACT

Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min(-1) and K1/2 = 0.55 µM, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nM). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.


Subject(s)
DNA Repair/physiology , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Thymine DNA Glycosylase/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , DNA Methylation/physiology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Glycosylation , HeLa Cells , Humans , Protein Processing, Post-Translational/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Substrate Specificity , Sumoylation/physiology , Thymine DNA Glycosylase/chemistry , Thymine DNA Glycosylase/genetics , Ubiquitin-Conjugating Enzymes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL