Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Med Devices (Auckl) ; 17: 97-105, 2024.
Article in English | MEDLINE | ID: mdl-38434149

ABSTRACT

Objective: To demonstrate the use of the Data Extraction and Longitudinal Trend Analysis (DELTA) system in the National Evaluation System for health Technology's (NEST) medical device surveillance cloud environment by analyzing coronary stent safety using real world clinical data and comparing results to clinical trial findings. Design and Setting: Electronic health record (EHR) data from two health systems, the Social Security Death Master File, and device databases were ingested into the NEST cloud, and safety analyses of two stents were performed using DELTA. Participants and Interventions: This is an observational study of patients receiving zotarolimus drug-eluting coronary stents (ZES) or everolimus eluting coronary stents (EES) between July 1, 2015 and December 31, 2017. Results: After exclusions, 3334 patients receiving EES and 1002 receiving ZES were available for study. Analysis using inverse probability weighting showed no significant difference in one-year mortality or major adverse cardiac events (MACE) for EES compared to ZES [Mortality Odds Ratio 0.94 (95% CI 0.81-1.175); p = 0.780] [MACE Odds Ratio 1.04 (95% CI 0.92-1.16; p = 0.551]). Analysis using propensity matching showed no significant difference in EES one-year mortality (547 of 992 alive and available after censoring) compared to ZES (546 of 992) [Log-Rank statistic 0.3348 (p = 0.563)]. Conclusion: Automated cloud-based medical device safety surveillance using EHR data is feasible and was efficiently performed using DELTA. No statistically significant differences in 1-year safety outcomes between ZES and EES were identified using two statistical approaches, consistent with randomized trial findings.

2.
J Interv Card Electrophysiol ; 66(8): 1817-1825, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36738387

ABSTRACT

BACKGROUND: The ThermoCool STSF catheter is used for ablation of ischemic ventricular tachycardia (VT) in routine clinical practice, although outcomes have not been studied and the catheter does not have Food and Drug Administration (FDA) approval for this indication. We used real-world health system data to evaluate its safety and effectiveness for this indication. METHODS: Among patients undergoing ischemic VT ablation with the ThermoCool STSF catheter pooled across two health systems (Mercy Health and Mayo Clinic), the primary safety composite outcome of death, thromboembolic events, and procedural complications within 7 days was compared to a performance goal of 15%, which is twice the expected proportion of the primary composite safety outcome based on prior studies. The exploratory effectiveness outcome of rehospitalization for VT or heart failure or repeat VT ablation at up to 1 year was averaged across health systems among patients treated with the ThermoCool STSF vs. ST catheters. RESULTS: Seventy total patients received ablation for ischemic VT using the ThermoCool STSF catheter. The primary safety composite outcome occurred in 3/70 (4.3%; 90% CI, 1.2-10.7%) patients, meeting the pre-specified performance goal, p = 0.0045. At 1 year, the effectiveness outcome risk difference (STSF-ST) at Mercy was - 0.4% (90% CI: - 25.2%, 24.3%) and at Mayo Clinic was 12.6% (90% CI: - 13.0%, 38.4%); the average risk difference across both institutions was 5.8% (90% CI: - 12.0, 23.7). CONCLUSIONS: The ThermoCool STSF catheter was safe and appeared effective for ischemic VT ablation, supporting continued use of the catheter and informing possible FDA label expansion. Health system data hold promise for real-world safety and effectiveness evaluation of cardiovascular devices.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Humans , Treatment Outcome , Tachycardia, Ventricular/therapy , Arrhythmias, Cardiac/surgery , Catheters , Catheter Ablation/adverse effects
3.
BMJ Surg Interv Health Technol ; 5(1): e000167, 2023.
Article in English | MEDLINE | ID: mdl-36704544

ABSTRACT

Objectives: To examine the current state of unique device identifier (UDI) implementation, including barriers and facilitators, among eight health systems participating in a research network committed to real-world evidence (RWE) generation for medical devices. Design: Mixed methods, including a structured survey and semistructured interviews. Setting: Eight health systems participating in the National Evaluation System for health Technology research network within the USA. Participants: Individuals identified as being involved in or knowledgeable about UDI implementation or medical device identification from supply chain, information technology and high-volume procedural area(s) in their health system. Main outcomes measures: Interview topics were related to UDI implementation, including barriers and facilitators; UDI use; benefits of UDI adoption; and vision for UDI implementation. Data were analysed using directed content analysis, drawing on prior conceptual models of UDI implementation and the Exploration, Preparation, Implementation, Sustainment framework. A brief survey of health system characteristics and scope of UDI implementation was also conducted. Results: Thirty-five individuals completed interviews. Three of eight health systems reported having implemented UDI. Themes identified about barriers and facilitators to UDI implementation included knowledge of the UDI and its benefits among decision-makers; organisational systems, culture and networks that support technology and workflow changes; and external factors such as policy mandates and technology. A final theme focused on the availability of UDIs for RWE; lack of availability significantly hindered RWE studies on medical devices. Conclusions: UDI adoption within health systems requires knowledge of and impetus to achieve operational and clinical benefits. These are necessary to support UDI availability for medical device safety and effectiveness studies and RWE generation.

4.
JAMIA Open ; 6(1): ooac108, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36632328

ABSTRACT

The objective of this study is to describe application of the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) to support medical device real-world evaluation in a National Evaluation System for health Technology Coordinating Center (NESTcc) Test-Case involving 2 healthcare systems, Mercy Health and Mayo Clinic. CDM implementation was coordinated across 2 healthcare systems with multiple hospitals to aggregate both medical device data from supply chain databases and patient outcomes and covariates from electronic health record data. Several data quality assurance (QA) analyses were implemented on the OMOP CDM to validate the data extraction, transformation, and load (ETL) process. OMOP CDM-based data of relevant patient encounters were successfully established to support studies for FDA regulatory submissions. QA analyses verified that the data transformation was robust between data sources and OMOP CDM. Our efforts provided useful insights in real-world data integration using OMOP CDM for medical device evaluation coordinated across multiple healthcare systems.

5.
BMJ Surg Interv Health Technol ; 4(Suppl 1): e000123, 2022.
Article in English | MEDLINE | ID: mdl-36393894

ABSTRACT

Objectives: Generating and using real-world evidence (RWE) is a pragmatic solution for evaluating health technologies. RWE is recognized by regulators, health technology assessors, clinicians, and manufacturers as a valid source of information to support their decision-making. Well-designed registries can provide RWE and become more powerful when linked with electronic health records and administrative databases in coordinated registry networks (CRNs). Our objective was to create a framework of maturity of CRNs and registries, so guiding their development and the prioritization of funding. Design setting and participants: We invited 52 stakeholders from diverse backgrounds including patient advocacy groups, academic, clinical, industry and regulatory experts to participate on a Delphi survey. Of those invited, 42 participated in the survey to provide feedback on the maturity framework for CRNs and registries. An expert panel reviewed the responses to refine the framework until the target consensus of 80% was reached. Two rounds of the Delphi were distributed via Qualtrics online platform from July to August 2020 and from October to November 2020. Main outcome measures: Consensus on the maturity framework for CRNs and registries consisted of seven domains (unique device identification, efficient data collection, data quality, product life cycle approach, governance and sustainability, quality improvement, and patient-reported outcomes), each presented with five levels of maturity. Results: Of 52 invited experts, 41 (79.9%) responded to round 1; all 41 responded to round 2; and consensus was reached for most domains. The expert panel resolved the disagreements and final consensus estimates ranged from 80.5% to 92.7% for seven domains. Conclusions: We have developed a robust framework to assess the maturity of any CRN (or registry) to provide reliable RWE. This framework will promote harmonization of approaches to RWE generation across different disciplines and health systems. The domains and their levels may evolve over time as new solutions become available.

6.
JAMA Netw Open ; 5(8): e2227134, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35976649

ABSTRACT

Importance: The ThermoCool SmartTouch catheter (ablation catheter with contact force and 6-hole irrigation [CF-I6]) is approved by the US Food and Drug Administration (FDA) for paroxysmal atrial fibrillation (AF) ablation and used in routine clinical practice for persistent AF ablation, although clinical outcomes for this indication are unknown. There is a need to understand whether data from routine clinical practice can be used to conduct regulatory-grade evaluations and support label expansions. Objective: To use health system data to compare the safety and effectiveness of the CF-I6 catheter for persistent AF ablation with the ThermoCool SmartTouch SurroundFlow catheter (ablation catheter with contact force and 56-hole irrigation [CF-I56]), which is approved by the FDA for this indication. Design, Setting, and Participants: This retrospective, comparative-effectiveness cohort study included patients undergoing catheter ablation for persistent AF at Mercy Health or Mayo Clinic from January 1, 2014, to April 30, 2021, with up to a 1-year follow-up using electronic health record data. Exposures: Use of the CF-I6 or CF-I56 catheter. Main Outcomes and Measures: The primary safety outcome was a composite of death, thromboembolic events, and procedural complications within 7 to 90 days. The exploratory effectiveness outcome was a composite of AF-related hospitalization events after a 90-day blanking period. Propensity score weighting was used to balance baseline covariates. Risk differences were estimated between catheter groups and averaged across the 2 health care systems, testing for noninferiority of the CF-I6 vs the CF-I56 catheter with respect to the safety outcome using 2-sided 90% CIs. Results: Overall, 1450 patients (1034 [71.3%] male; 1397 [96.3%] White) underwent catheter ablation for persistent AF, including 949 at Mercy Health (186 CF-I6 and 763 CF-I56; mean [SD] age, 64.9 [9.2] years) and 501 at Mayo Clinic (337 CF-I6 and 164 CF-I56; mean [SD] age, 63.7 [9.5] years). A total of 798 (55.0%) had been treated with class I or III antiarrhythmic drugs before ablation. The safety outcome (CF-I6 - CF-I56) was similar at both Mercy Health (1.3%; 90% CI, -2.1% to 4.6%) and Mayo Clinic (-3.8%; 90% CI, -11.4% to 3.7%); the mean difference was noninferior, with a mean of 0.5% (90% CI, -2.6% to 3.5%; P < .001). The effectiveness was similar at 12 months between the 2 catheter groups (mean risk difference, -1.8%; 90% CI, -7.3% to 3.7%). Conclusions and Relevance: In this cohort study, the CF-I6 catheter met the prespecified noninferiority safety criterion for persistent AF ablation compared with the CF-I56 catheter, and effectiveness was similar. This study demonstrates the ability of electronic health care system data to enable safety and effectiveness evaluations of medical devices.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Aged , Atrial Fibrillation/surgery , Catheter Ablation/methods , Catheters , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
7.
Med Devices (Auckl) ; 15: 177-186, 2022.
Article in English | MEDLINE | ID: mdl-35761948

ABSTRACT

Background: The requirement for medical device manufacturers to label their devices with a unique device identifier (UDI) was formalized by the 2013 US Food and Drug Administration Unique Device Identification System Rule. However, parallel regulatory requirement for US health systems to use UDIs, particularly the electronic documentation of UDIs during patient care is lacking. Despite the lack of regulation, some health systems have implemented and are using UDIs. To assess the current state, we studied representative health system UDI implementation experiences, including barriers and the strategies to overcome them, and identified next steps to advance UDI adoption. Methods: Semi-structured interviews were performed with health system personnel involved in UDI implementation in their cardiac catheterization labs or operating rooms. Interviews were transcribed and analyzed using the framework methodology of Ritchie and Spencer. An expert panel evaluated findings and informed barriers, strategies, and next steps. Results: Twenty-four interviews at ten health systems were performed. Identified barriers were internal (lack of organizational support, information technology gaps, clinical resistance) and external (information technology vendor resistance, limitations in manufacturer support, gaps in reference data, lack of an overall UDI system). Identified strategies included relationship building, education, engagement, and communication. Next steps to advance UDI adoption focus on education, research, support, and policy. Conclusions and Implications: Delineation of UDI implementation barriers and strategies provides guidance and support for health systems to adopt the UDI standard and electronically document UDIs during clinical care. Next steps illuminate critical areas for attention to advance UDI adoption and achieve a comprehensive UDI system in health care to strengthen patient care and safety.

8.
JAMIA Open ; 5(2): ooac035, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35663113

ABSTRACT

Objectives: To support development of a robust postmarket device evaluation system using real-world data (RWD) from electronic health records (EHRs) and other sources, employing unique device identifiers (UDIs) to link to device information. Methods: To create consistent device-related EHR RWD across 3 institutions, we established a distributed data network and created UDI-enriched research databases (UDIRs) employing a common data model comprised of 24 tables and 472 fields. To test the system, patients receiving coronary stents between 2010 and 2019 were loaded into each institution's UDIR to support distributed queries without sharing identifiable patient information. The ability of the system to execute queries was tested with 3 quality assurance checks. To demonstrate face validity of the data, a retrospective survival study of patients receiving zotarolimus or everolimus stents from 2012 to 2017 was performed using distributed analysis. Propensity score matching was used to compare risk of 6 cardiovascular outcomes within 12 months postimplantation. Results: The test queries established network functionality. In the analysis, we identified 9141 patients (Mercy = 4905, Geisinger = 4109, Intermountain = 127); mean age 65 ± 12 years, 69% males, 23% zotarolimus. Separate matched analyses at the 3 institutions showed hazard ratio estimates (zotarolimus vs everolimus) of 0.85-1.59 for subsequent percutaneous coronary intervention (P = .14-.52), 1.06-2.03 for death (P = .16-.78) and 0.94-1.40 for the composite endpoint (P = .16-.62). Discussion: The analysis results are consistent with clinical studies comparing these devices. Conclusion: This project shows that multi-institutional data networks can provide clinically relevant real-world evidence via distributed analysis while maintaining data privacy.

9.
Med Devices (Auckl) ; 14: 411-421, 2021.
Article in English | MEDLINE | ID: mdl-34880686

ABSTRACT

BACKGROUND: The US Food and Drug Administration's Unique Device Identification System Rule of 2013 mandated manufacturers to assign unique device identifiers (UDIs) to their medical devices. Most high-risk (Class III), moderate-risk (Class II) and implantable devices now have UDIs. To achieve the necessary next step for a comprehensive UDI-enabled system for patient safety, UDIs must be electronically documented during patient care, a process not routinely done. The purpose of this research was to study the implementation experiences of diverse health systems in order to develop a roadmap for UDI implementation at the point of care. METHODS: Semi-structured interviews were conducted with personnel at health systems that had implemented UDI for implantable devices in their cardiac catheterization labs or operating rooms. Interviews were audio-recorded, transcribed, and analyzed using the framework methodology of Ritchie and Spencer. Data interpretation involved development of a conceptual model and detailed recommendations for UDI implementation. An expert panel evaluated and provided input on the roadmap. RESULTS: Twenty-four interviews at ten health systems were conducted by phone. Participants described implementation steps, factors and barriers impacting implementation. Findings populated a UDI implementation roadmap, that includes Foundational Themes, Key Components, Key Steps, UDI Use, and Outcomes. CONCLUSIONS AND IMPLICATIONS: The UDI implementation roadmap provides a framework for health systems to address the necessary steps and multilevel factors that underpin UDI implementation at the point of care. It is intended to guide and advance routine electronic documentation of UDIs for devices used during clinical care, the critical next step for a comprehensive UDI-enabled system to enhance medical device safety and effectiveness for patients.

11.
J Am Med Inform Assoc ; 28(10): 2241-2250, 2021 09 18.
Article in English | MEDLINE | ID: mdl-34313748

ABSTRACT

OBJECTIVE: The study sought to conduct an informatics analysis on the National Evaluation System for Health Technology Coordinating Center test case of cardiac ablation catheters and to demonstrate the role of informatics approaches in the feasibility assessment of capturing real-world data using unique device identifiers (UDIs) that are fit for purpose for label extensions for 2 cardiac ablation catheters from the electronic health records and other health information technology systems in a multicenter evaluation. MATERIALS AND METHODS: We focused on data capture and transformation and data quality maturity model specified in the National Evaluation System for Health Technology Coordinating Center data quality framework. The informatics analysis included 4 elements: the use of UDIs for identifying device exposure data, the use of standardized codes for defining computable phenotypes, the use of natural language processing for capturing unstructured data elements from clinical data systems, and the use of common data models for standardizing data collection and analyses. RESULTS: We found that, with the UDI implementation at 3 health systems, the target device exposure data could be effectively identified, particularly for brand-specific devices. Computable phenotypes for study outcomes could be defined using codes; however, ablation registries, natural language processing tools, and chart reviews were required for validating data quality of the phenotypes. The common data model implementation status varied across sites. The maturity level of the key informatics technologies was highly aligned with the data quality maturity model. CONCLUSIONS: We demonstrated that the informatics approaches can be feasibly used to capture safety and effectiveness outcomes in real-world data for use in medical device studies supporting label extensions.


Subject(s)
Electronic Health Records , Health Information Systems , Feasibility Studies , Informatics , Natural Language Processing
12.
BMJ Surg Interv Health Technol ; 3(1): e000089, 2021.
Article in English | MEDLINE | ID: mdl-35047806

ABSTRACT

OBJECTIVES: To determine the feasibility of using real-world data to assess the safety and effectiveness of two cardiac ablation catheters for the treatment of persistent atrial fibrillation and ischaemic ventricular tachycardia. DESIGN: Retrospective cohort. SETTING: Three health systems in the USA. PARTICIPANTS: Patients receiving ablation with the two ablation catheters of interest at any of the three health systems. MAIN OUTCOME MEASURES: Feasibility of identifying the medical devices and participant populations of interest as well as the duration of follow-up and positive predictive values (PPVs) for serious safety (ischaemic stroke, acute heart failure and cardiac tamponade) and effectiveness (arrhythmia-related hospitalisation) clinical outcomes of interest compared with manual chart validation by clinicians. RESULTS: Overall, the catheter of interest for treatment of persistent atrial fibrillation was used for 4280 ablations and the catheter of interest for ischaemic ventricular tachycardia was used 1516 times across the data available within the three health systems. The duration of patient follow-up in the three health systems ranged from 91% to 97% at ≥7 days, 89% to 96% at ≥30 days, 77% to 90% at ≥6 months and 66% to 84% at ≥1 year. PPVs were 63.4% for ischaemic stroke, 96.4% for acute heart failure, 100% at one health system for cardiac tamponade and 55.7% for arrhythmia-related hospitalisation. CONCLUSIONS: It is feasible to use real-world health system data to evaluate the safety and effectiveness of cardiac ablation catheters, though evaluations must consider the implications of variation in follow-up and endpoint ascertainment among health systems.

13.
J Vasc Surg ; 73(5): 1702-1714.e11, 2021 05.
Article in English | MEDLINE | ID: mdl-33080324

ABSTRACT

BACKGROUND: The Superficial Femoral Artery-Popliteal EvidencE Development Study Group developed contemporary objective performance goals (OPGs) for peripheral vascular interventions (PVI) for superficial femoral artery (SFA)-popliteal artery disease using the Registry Assessment of Peripheral Interventional Devices. METHODS: The Society for Vascular Surgery Vascular Quality Initiative PVI registry from January 2010 to October 2016 was used to develop OPGs based on SFA-popliteal procedures (n = 21,377) for intermittent claudication and critical limb ischemia (CLI). OPGs included 1-year rates for target lesion revascularization (TLR), major amputation, and 1 and 4-year survival rates. OPGs were calculated for the SFA and popliteal arteries and stratified by four treatments: angioplasty alone (percutaneous transluminal angioplasty [PTA]), self-expanding stenting, atherectomy, and any treatment type. Outcomes were illustrated by unadjusted Kaplan-Meier analyses. RESULTS: Cohorts included PTA (n = 7505), stenting (n = 9217), atherectomy (n = 2510) and any treatment (n = 21,377). The mean age was 69 years, 58% were male, 79% were White, and 52% had CLI. The freedom from TLR OPGs at 1 year in the SFA were 80.3% (PTA), 83.2% (stenting), 83.9% (atherectomy), and 81.9% (any treatments). The freedom from TLR OPGs at 1 year in the popliteal were 81.3% (PTA), 81.3% (stenting), 80.2% (atherectomy), and 81.1% (any treatments). The freedom from major amputation OPGs at 1 year after SFA PVI were 93.4% (PTA), 95.7% (stenting), 95.1% (atherectomy), and 94.8% (any treatments). The freedom from major amputation OPG at 1 year after popliteal PVI were 90.5% (PTA), 93.7% (stenting), 91.8% (atherectomy), and 91.8%, (any treatments). The 4-year survival OPGs after SFA PVI were 76% (PTA), 80% (stenting), 82% (atherectomy), and 79% (any treatments), and for the popliteal artery were 72% (PTA), 77% (stenting), 82% (atherectomy), and 75% (any treatment). On a multivariable analysis, which included patient-level, leg-level, and lesion-level covariates, CLI was the single independent factor associated with increased TLR, amputation, and mortality. CONCLUSIONS: The Superficial Femoral Artery-Popliteal EvidencE Development OPGs define a new, contemporary benchmark for SFA-popliteal interventions using a large subset of real-world evidence to inform more efficient peripheral device clinical trial designs to support regulatory and clinical decision-making. It is appropriate to discuss proposals intended for regulatory approval with the US Food and Drug Administration to refine the OPG to match the specific trial population. The OPGs may be updated using coordinated registry networks to assess long-term real-world device performance.


Subject(s)
Benchmarking , Endovascular Procedures/instrumentation , Femoral Artery , Intermittent Claudication/therapy , Ischemia/therapy , Peripheral Arterial Disease/therapy , Popliteal Artery , Quality Indicators, Health Care , Aged , Aged, 80 and over , Amputation, Surgical , Benchmarking/standards , Critical Illness , Endovascular Procedures/adverse effects , Endovascular Procedures/mortality , Endovascular Procedures/standards , Female , Femoral Artery/diagnostic imaging , Femoral Artery/physiopathology , Hospital Mortality , Humans , Intermittent Claudication/diagnostic imaging , Intermittent Claudication/mortality , Intermittent Claudication/physiopathology , Ischemia/diagnostic imaging , Ischemia/mortality , Ischemia/physiopathology , Limb Salvage , Male , Middle Aged , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/mortality , Peripheral Arterial Disease/physiopathology , Popliteal Artery/diagnostic imaging , Popliteal Artery/physiopathology , Quality Indicators, Health Care/standards , Registries , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome , United States
15.
BMJ Surg Interv Health Technol ; 2(1): e000047, 2020.
Article in English | MEDLINE | ID: mdl-35047794

ABSTRACT

OBJECTIVES: The CathPCI Data Extraction and Longitudinal Trend Analysis study was designed to determine the feasibility of conducting prospective surveillance of a large national registry to perform comparative safety analyses of medical devices. We sought to determine whether the complementary use of retrospective case data could improve safety signal detection time. DESIGN: We performed a simulated surveillance study of the comparative safety of the Mynx vascular closure device (VCD) with propensity score matched alternate VCD recipients, using both retrospective and prospective cohort data. SETTING: Centers within the USA using the National Cardiovascular Data Registry (NCDR) CathPCI Registry. PARTICIPANTS: Percutaneous coronary intervention cases captured within the NCDR CathPCI Registry from July 1, 2009 to September 30, 2013 were included in the analysis. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Absolute and relative risk (RR) of any vascular complication (a composite of bleeding at access site, hematoma at access site, retroperitoneal bleeding, and other vascular complications requiring treatment); time to signal detection. RESULTS: A safety alert was detected for the primary outcome of "any vascular complication" after 15 months of surveillance and was sustained for the study duration (absolute risk of any vascular complication, 1.20% vs 0.73%, RR, 1.63; 95% CI 1.50 to 1.79; p<0.001). The safety signal was identified 12 months earlier with the use of retrospective case data than during the initial study. CONCLUSIONS: Prospective, active surveillance of cardiovascular registries is feasible to perform comparative analyses of medical devices. Retrospective data may complement prospective surveillance to improve time to signal detection, indicating the need for earlier prospective application of safety surveillance for devices new to the market.

16.
Circ Cardiovasc Qual Outcomes ; 12(2): e004666, 2019 02.
Article in English | MEDLINE | ID: mdl-30764652

ABSTRACT

Background Current strategies for ensuring the postmarket safety of medical devices are limited by small sample size and reliance on voluntary reporting of adverse events. Prospective, active surveillance of clinical registries may provide early warnings in the postmarket evaluation of medical device safety but has not been demonstrated in national clinical data registries. Methods and Results The CathPCI DELTA (Data Extraction and Longitudinal Trend Analysis) study was designed to assess the feasibility of prospective, active safety surveillance of medical devices within a national cardiovascular registry. We sought to assess the ability of our surveillance strategy to avoid false safety alerts by conducting an active safety surveillance study of aspiration thrombectomy catheters using data within the National Cardiovascular Data Registry CathPCI registry, where no difference in safety outcomes were anticipated for the primary in-hospital safety outcome of death and major adverse cardiovascular events (MACE). We performed a propensity-matched analysis of 5 aspiration thrombectomy catheter devices used during percutaneous coronary intervention among 95 925 patients presenting with ST-segment-elevation myocardial infarction between January 1, 2011 and September 30, 2013. After 33 months of surveillance, no safety alerts were triggered for the primary safety endpoints of death or MACE, with no between-catheter differences observed. The absolute risk of death during acute hospitalization ranged from 5.11% to 5.32% among the most commonly used aspiration thrombectomy catheter devices, with relative risks for death ranging from 0.96 to 1.03. The absolute risk of MACE ranged from 9.78% to 10.18%, with relative risks for MACE ranging from 0.99 to 1.02. There were no statistically significant differences in the rates of death or MACE between any of the aspiration thrombectomy catheter devices analyzed. Conclusions The CathPCI DELTA study demonstrates that prospective, active safety surveillance of national clinical registries is feasible to provide near-real-time safety assessments of new medical devices.


Subject(s)
Cardiac Catheterization/instrumentation , Cardiac Catheters , Percutaneous Coronary Intervention/instrumentation , Product Surveillance, Postmarketing , Thrombectomy/instrumentation , Aged , Cardiac Catheterization/adverse effects , Cardiac Catheterization/mortality , Equipment Design , Equipment Failure , Feasibility Studies , Female , Humans , Male , Middle Aged , Patient Safety , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/mortality , Prospective Studies , Registries , Risk Assessment , Thrombectomy/adverse effects , Thrombectomy/mortality , Treatment Outcome
17.
AMIA Annu Symp Proc ; 2019: 864-873, 2019.
Article in English | MEDLINE | ID: mdl-32308883

ABSTRACT

BACKGROUND: To assess the current state of clinical data interoperability, we evaluated the use of data standards across 38 large professional society registries. METHODS: The analysis included 4 primary components: 1) environmental scan, 2) abstraction and cross-tabulation of clinical concepts and corresponding data elements from registry case report forms, dictionaries, and / or data models, 3) cross-tabulation of same across national common data models, and 4) specifying data element metadata to achieve native data interoperability. RESULTS: The registry analysis identified approximately 50 core clinical concepts. None were captured using the same data representation across all registries, and there was little implementation of data standards. To improve technical implementation, we specified 13 key metadata for each concept to be used to achieve data consistency. CONCLUSION: The registry community has not benefitted from and does not contribute to interoperability efforts. A common, authoritative process to specify and implement common data elements is greatly needed.


Subject(s)
Common Data Elements , Health Information Interoperability , Metadata , Registries/standards , Female , Humans , Male , Societies , United States
18.
BMJ Surg Interv Health Technol ; 1(1): e000003, 2019.
Article in English | MEDLINE | ID: mdl-35047771

ABSTRACT

BACKGROUND: The Transcatheter Valve Therapy (TVT) Coordinated Registry Network (CRN) supported 23 regulatory decisions and ensured evidence-based evaluation of the application of TVT technology. However, there are cost concerns that require value assessment of the TVT CRN compared with traditional study designs. OBJECTIVES: We aimed to determine the value created by the TVT CRN based on (1) Return on investment (ROI), (2) Time saved (TS) in conducting necessary regulatory studies. METHODS: For both ROI and TS analyses, we compared studies that used the TVT CRN with those that would have been required if the registry did not exist (counterfactual studies). To estimate ROI, we accounted for the costs of investment and gain from investment. Both the counterfactual costs and length of studies were projected using design specifications determined by US Food and Drug Administration (FDA) reviewers. RESULTS: We identified 21 studies using the TVT CRN (supporting 23 FDA decisions) that generated evidence on TVT for three device manufacturers. ROI is estimated to be greater than 550%. TS by using the CRN ranged from months to years. CONCLUSIONS: The CRN method to evidence generation creates value for manufacturers and the broader device ecosystem, demonstrated with this example of the TVT CRN. The public health benefits of evidence created by this CRN outweighs the difference in data quality between traditional clinical studies and the CRN method.

19.
J Am Med Inform Assoc ; 25(2): 111-120, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28472359

ABSTRACT

Objective: The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Methods: Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. Results: The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. Conclusion: The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model.


Subject(s)
Electronic Data Processing/organization & administration , Equipment Safety , Information Systems , Product Labeling , Product Surveillance, Postmarketing , Stents , Electronic Health Records , Humans , Information Systems/organization & administration , Information Technology , Product Surveillance, Postmarketing/methods , United States , United States Food and Drug Administration
20.
Ann Intern Med ; 167(7): 526-527, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28973205
SELECTION OF CITATIONS
SEARCH DETAIL