Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 842, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39242989

ABSTRACT

BACKGROUND: Calcium-dependent protein kinase (CDPK) plays a key role in cotton tolerance to abiotic stress. However, its role in cotton heat stress tolerance is not well understood. Here, we characterize the GhCDPK gene family and their expression profiles with the aim of identifying CDPK genes associated with heat stress tolerance. RESULTS: This study revealed 48 GhCDPK members in the cotton genome, distributed on 18 chromosomes. Tree phylogenetic analysis showed three main clustering groups of the GhCDPKs. Cis-elements revealed many abiotic stress and phytohormone pathways conserved promoter regions. Similarly, analysis of the transcription factor binding sites (TFBDS) in the GhCDPK genes showed many stress and hormone related sites. The expression analysis based on qRT-PCR showed that GhCDPK16 was highly responsive to high-temperature stress. Subsequent protein-protein interactions of GhCDPK16 revealed predictable interaction with ROS generating, calcium binding, and ABA signaling proteins. Overexpression of GhCDPK16 in cotton and Arabidopsis improved thermotolerance by lowering ROS compound buildup. Under heat stress, GhCDPK16 transgenic lines upregulated heat-inducible genes GhHSP70, GHSP17.3, and GhGR1, as demonstrated by qRT-PCR analysis. Contrarily, GhCDPK16 knockout lines in cotton exhibited an increase in ROS accumulation. Furthermore, antioxidant enzyme activity was dramatically boosted in the GhCDPK16-ox transgenic lines. CONCLUSIONS: The collective findings demonstrated that GhCDPK16 could be a viable gene to enhance thermotolerance in cotton and, therefore, a potential candidate gene for improving heat tolerance in cotton.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Heat-Shock Response , Plant Proteins , Arabidopsis/genetics , Arabidopsis/physiology , Gossypium/genetics , Gossypium/physiology , Gossypium/metabolism , Heat-Shock Response/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Thermotolerance/genetics
2.
Front Immunol ; 15: 1368487, 2024.
Article in English | MEDLINE | ID: mdl-38846936

ABSTRACT

Background: Contactin-1 (CNTN1) antibody-positive nodopathy is rare and exhibits distinct clinical symptoms such as tremors and ataxia. However, the mechanisms of these symptoms and the characteristics of the cerebral spinal fluid (CSF) remain unknown. Case presentation: Here, we report a case of recurrent CNTN1 antibody-positive nodopathy. Initially, a 45-year-old woman experiencing numbness in the upper limbs and weakness in the lower limbs was diagnosed with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Eleven years later, her symptoms worsened, and she began to experience tremors and ataxia. Tests for serum CNTN1, GT1a, and GQ1b antibodies returned positive. Subsequently, she was diagnosed with CNTN1 antibody-positive nodopathy and underwent plasmapheresis therapy, although the treatment's efficacy was limited. To gain a deeper understanding of the disease, we conducted a comprehensive literature review, identifying 52 cases of CNTN1 antibody-positive nodopathy to date, with a tremor prevalence of 26.9%. Additionally, we found that the average CSF protein level in CNTN1 antibody-positive nodopathy was 2.57 g/L, with 87% of patients exhibiting a CSF protein level above 1.5 g/L. Conclusion: We present a rare case of recurrent CNTN1 antibody-positive nodopathy. Our findings indicate a high prevalence of tremor (26.9%) and elevated CSF protein levels among patients with CNTN1 antibody-positive nodopathy.


Subject(s)
Autoantibodies , Contactin 1 , Humans , Female , Middle Aged , Autoantibodies/blood , Autoantibodies/immunology , Contactin 1/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/therapy , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/blood , Recurrence , Tremor/immunology , Tremor/etiology , Plasmapheresis
3.
Microorganisms ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38399670

ABSTRACT

Intensive aquaculture in high-density hybrid snakehead [Channa maculata (♀) × Channa argus (♂)] fishponds can lead to toxic conditions for fish. This study investigated nitrogen migration and transformation in these fishponds during different cultivation periods. Using qPCR technology, we analyzed the abundance variation of nitrogen-cycling microorganisms in water and sediment to reveal the nitrogen metabolism characteristics of hybrid snakehead fishponds. The results showed that fish biomass significantly impacts suspended particulate matter (SPM) flux. At the sediment-water interface, inorganic nitrogen fluxes showed predominant NO3--N absorption by sediments and NH4+-N and NO2--N release, especially in later cultivation stages. Sediments were rich in nirS and AMX 16S rRNA genes (ranging from 4.04 × 109 to 1.01 × 1010 and 1.19 × 108 to 2.62 × 108 copies/g, respectively) with nirS-type denitrifiers potentially dominating the denitrification process. Ammonia-oxidizing bacteria (AOB) were found to dominate the ammonia oxidation process over ammonia-oxidizing archaea (AOA) in both water and sediment. Redundancy analysis revealed a positive correlation between SPM flux, Chlorophyll a (Chl-a), and denitrification genes in the water, and between nitrogen-cycling genes and NH4+/NO2- fluxes at the interface. These findings provide a scientific basis for nitrogen control in hybrid snakehead fishponds.

4.
Front Immunol ; 14: 1208017, 2023.
Article in English | MEDLINE | ID: mdl-37449206

ABSTRACT

Objective: To report the case of a patient with refractory neuromyelitis optica spectrum disorder (NMOSD), who, despite showing poor response or intolerance to multiple immunosuppressants, was successfully treated with Ofatumumab. Case presentation: A 42-year-old female was diagnosed with NMOSD in the first episode of the disease. Despite treatment with intravenous methylprednisolone, immunoglobulin, rituximab and immunoadsorption, together with oral steroids, azathioprine, mycophenolate mofetil and tacrolimus, she underwent various adverse events, such as abnormal liver function, repeated infections, fever, rashes, hemorrhagic shock, etc., and experienced five relapses over the ensuing four years. Finally, clinicians decided to initiate Ofatumumab to control the disease. The patient received 9 doses of Ofatumumab over the next 10 months at customized intervals. Her symptoms were stable and there was no recurrence or any adverse events. Conclusion: Ofatumumab might serve as an effective and safe alternative for NMOSD patients who are resistant to other current immunotherapies.


Subject(s)
Neuromyelitis Optica , Humans , Female , Adult , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/drug therapy , Treatment Outcome , Immunosuppressive Agents/therapeutic use , Azathioprine/adverse effects
5.
Bioorg Med Chem Lett ; 81: 129128, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36639036

ABSTRACT

7-Ethyl-10-hydroxycamptothecin (SN38), the bioactive metabolite of irinotecan (CPT-11), has been shown to be 100-1000 times more effective than CPT-11. However, the poor water solubility and bioavailability of SN38 constrained its clinical application. In this study, we synthesized a novel SN38-glucose conjugate (FSY04) to address this issue. Our in vitro studies indicated that FSY04 had a potent inhibitory ability against colorectal cancer (CRC) cell lines of SW-480 and HCT-116 compared to the inhibitory capacity of CPT-11. Interestingly, FSY04 possessed lower cytotoxicity against normal cell lines of LO2 and 293T in contrast with CPT-11. Moreover, FSY04 is more active than CPT-11 in inducing apoptosis, inhibiting migration, and invasion. In vivo experiments suggested that half of the equivalent of FSY04 inhibited the growth of SW480 in the xenograft tumor model better than one equivalent of CPT-11. Our data demonstrated FSY04 to be a promising agent in CRC therapy.


Subject(s)
Antineoplastic Agents, Phytogenic , Colorectal Neoplasms , Animals , Humans , Irinotecan/pharmacology , Camptothecin/pharmacology , Cell Line, Tumor , Drug Delivery Systems , Disease Models, Animal , Colorectal Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/therapeutic use
6.
Front Cell Infect Microbiol ; 13: 1257317, 2023.
Article in English | MEDLINE | ID: mdl-38239505

ABSTRACT

Introduction: In this study, we aimed to investigate the association between gut microbiota and high on-treatment platelet reactivity (HTPR) in patients with acute ischemic stroke (AIS). Methods: We enrolled a total of 48 AIS patients, including 19 HTPR patients and 29 non-high on-treatment platelet reactivity (NHTPR) patients, along with 10 healthy controls. Clinical and laboratory data, as well as stool samples, were collected from all participants. The composition and function of gut microbiota were assessed using 16S rRNA sequencing. Differences in the gut microbiota between the two groups were analyzed, and a diagnostic model based on the gut microbiota was established using random forest model. Results: HTPR patients exhibited a decreased microbial richness compared to NHTPR patients. Additionally, the relative abundance of unidentified_Clostridia and Ralstonia was lower in HTPR patients. Significant differences in biological functions, such as toxoplasmosis, were observed between the two groups. The combination of Ralstonia, unidentified-Clostridia, Mailhella, Anaerofustis, and Aggregatibacter showed excellent predictive ability for HTPR occurrence (AUC=0.896). When comparing AIS patients with healthy controls, alterations in the microbiota structure were observed in AIS patients, with imbalances in short-chain fatty acid-producing bacteria and pathogenic bacteria. Significant differences in biological functions, such as oxidative phosphorylation, were noted between the two groups. The combination of Alloprevotella, Terrisporobacter, Streptococcus, Proteus, and unidentified_Bacteria exhibited strong predictive power for AIS occurrence (AUC=0.994). Conclusions: This study is the first to uncover the microbial characteristics of HTPR in AIS patients and demonstrate the predictive potential of specific bacterial combinations for HTPR occurrence.


Subject(s)
Gastrointestinal Microbiome , Ischemic Stroke , Stroke , Humans , Platelet Aggregation Inhibitors/therapeutic use , Ticlopidine/therapeutic use , Clopidogrel/therapeutic use , Stroke/pathology , Ischemic Stroke/drug therapy , RNA, Ribosomal, 16S/genetics , Bacteria/genetics
7.
Front Pharmacol ; 13: 1014854, 2022.
Article in English | MEDLINE | ID: mdl-36506586

ABSTRACT

7-Ethyl-10-hydroxycamptothecin (SN38), a highly potent metabolite of irinotecan, has an anticancer efficacy 100-1000 folds more than irinotecan in vitro. However, the clinical application of SN38 has been limited due to the very narrow therapeutic window and poor water solubility. Herein, we report the SN38-glucose conjugates (Glu-SN38) that can target cancer cells due to their selective uptake via glucose transporters, which are overexpressed in most cancers. The in vitro antiproliferative activities against human cancer cell lines and normal cells of Glu-SN38 were investigated. One of the conjugates named 5b showed high potency and selectivity against human colorectal cancer cell line HCT116. Furthermore, 5b remarkably inhibited the growth of HCT116 in vivo. These results suggested that 5b could be a promising drug candidate for treating colorectal cancer.

8.
Mol Biomed ; 3(1): 46, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36536188

ABSTRACT

Proteolysis targeting chimeras (PROTACs) technology has emerged as a novel therapeutic paradigm in recent years. PROTACs are heterobifunctional molecules that degrade target proteins by hijacking the ubiquitin-proteasome system. Currently, about 20-25% of all protein targets are being studied, and most works focus on their enzymatic functions. Unlike small molecules, PROTACs inhibit the whole biological function of the target protein by binding to the target protein and inducing subsequent proteasomal degradation. PROTACs compensate for limitations that transcription factors, nuclear proteins, and other scaffolding proteins are difficult to handle with traditional small-molecule inhibitors. Currently, PROTACs have successfully degraded diverse proteins, such as BTK, BRD4, AR, ER, STAT3, IRAK4, tau, etc. And ARV-110 and ARV-471 exhibited excellent efficacy in clinical II trials. However, what targets are appropriate for PROTAC technology to achieve better benefits than small-molecule inhibitors are not fully understood. And how to rationally design an efficient PROTACs and optimize it to be orally effective poses big challenges for researchers. In this review, we summarize the features of PROTAC technology, analyze the detail of general principles for designing efficient PROTACs, and discuss the typical application of PROTACs targeting different protein categories. In addition, we also introduce the progress of relevant clinical trial results of representative PROTACs and assess the challenges and limitations that PROTACs may face. Collectively, our studies provide references for further application of PROTACs.

SELECTION OF CITATIONS
SEARCH DETAIL