Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
ACS Appl Mater Interfaces ; 16(20): 25665-25675, 2024 May 22.
Article En | MEDLINE | ID: mdl-38735053

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy. The polymeric prodrug was constructed by conjugating the R848 derivative to terminal amino groups of the linear dendritic polymer composed of linear poly(ethylene glycol) and lysine dendrimer. The amphiphilic prodrug self-assembled into nanoparticles (PLRS) of around 35 nm with a spherical morphology. PLRS nanoparticles could be internalized by antigen-presenting cells (APCs) in vitro and thus efficiently repolarized macrophages from M2 to M1 and facilitated the maturation of APCs. In addition, PLRS significantly inhibited tumor growth in the 4T1 orthotopic breast cancer model with much lower systemic side effects. Mechanistic studies suggested that PLRS significantly stimulated the TIME by repolarizing TAMs into the M1 phenotype and increased the infiltration of cytotoxic T cells into the tumor. This study provides an effective polymeric prodrug-based strategy to improve the therapeutic efficacy of R848 in cancer immunotherapy.


Imidazoles , Immunotherapy , Nanoparticles , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Animals , Mice , Imidazoles/chemistry , Imidazoles/pharmacology , Nanoparticles/chemistry , Female , Mice, Inbred BALB C , Cell Line, Tumor , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , RAW 264.7 Cells , Polyethylene Glycols/chemistry , Tumor Microenvironment/drug effects , Dendrimers/chemistry , Dendrimers/pharmacology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism
2.
Adv Sci (Weinh) ; 11(3): e2305217, 2024 Jan.
Article En | MEDLINE | ID: mdl-38029345

Hydrogels are prevailing drug delivery depots to improve antitumor efficacy and reduce systemic toxicity. However, the application of conventional free drug-loaded hydrogel is hindered by poor drug penetration in solid tumors. Here, an injectable ferritin-based nanocomposite hydrogel is constructed to facilitate tumor penetration and improve cancer chemoimmunotherapy. Specifically, doxorubicin-loaded human ferritin (Dox@HFn) and oxidized dextran (Dex-CHO) are used to construct the injectable hydrogel (Dox@HFn Gel) through the formation of pH-sensitive Schiff-base bonds. After peritumoral injection, the Dox@HFn Gel is retained locally for up to three weeks, and released intact Dox@HFn gradually, which can not only facilitate tumor penetration through active transcytosis but also induce immunogenic cell death (ICD) to tumor cells to generate an antitumor immune response. Combining with anti-programmed death-1 antibody (αPD-1), Dox@HFn Gel induces remarkable regression of orthotopic 4T1 breast tumors, further elicits a strong systemic anti-tumor immune response to effectively suppress tumor recurrence and lung metastasis of 4T1 tumors after surgical resection. Besides, the combination of Dox@HFn GelL with anti-CD47 antibody (αCD47) inhibits postsurgical tumor recurrence of aggressive orthotopic glioblastoma tumor model and significantly extends mice survival. This work sheds light on the construction of local hydrogels to potentiate antitumor immune response for improved cancer therapy.


Ferritins , Neoplasm Recurrence, Local , Humans , Mice , Animals , Nanogels , Neoplasm Recurrence, Local/drug therapy , Doxorubicin/pharmacology , Hydrogels/chemistry
3.
ACS Nano ; 18(1): 470-482, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38146673

Targeted delivery of vaccines to the spleen remains a challenge. Inspired by the erythrophagocytotic process in the spleen, we herein report that intravenous administration of senescent erythrocyte-based vaccines profoundly alters their tropism toward splenic antigen-presenting cells (APCs) for imprinting adaptive immune responses. Compared with subcutaneous inoculation, intravenous vaccination significantly upregulated splenic complement expression in vivo and demonstrated synergistic antibody killing in vitro. Consequently, intravenous senescent erythrocyte vaccination produces potent SARS-CoV-2 antibody-neutralizing effects, with potential protective immune responses. Moreover, the proposed senescent erythrocyte can deliver antigens from resected tumors and adjuvants to splenic APCs, thereby inducing a personalized immune reaction against tumor recurrence after surgery. Hence, our findings suggest that senescent erythrocyte-based vaccines can specifically target splenic APCs and evoke adaptive immunity and complement production, broadening the tools for modulating immunity, helping to understand adaptive response mechanisms to senescent erythrocytes better, and developing improved vaccines against cancer and infectious diseases.


Spleen , Vaccines , Vaccination , Adaptive Immunity , Administration, Intravenous , Erythrocytes
4.
Nano Lett ; 24(1): 402-410, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38153842

The ability of drugs to cross the blood-brain barrier (BBB) is crucial for treating central nervous system (CNS) disorders. Inspired by natural viruses, here we report a glucose and polydopamine (GPDA) coating method for the construction of delivery platforms for efficient BBB crossing. Such platforms are composed of nanoparticles (NPs) as the inner core and surface functionalized with glucose-poly(ethylene glycol) (Glu-PEG) and polydopamine (PDA) coating. Glu-PEG provides selective targeting of the NPs to brain capillary endothelial cells (BCECs), while PDA enhances the transcytosis of the NPs. This strategy is applicable to gold NPs (AuNPs), silica, and polymeric NPs, which achieves as high as 1.87% of the injected dose/g of brain in healthy brain tissues. In addition, the GPDA coating manages to deliver NPs into the tumor tissue in the orthotopic glioblastoma model. Our study may provide a universal strategy for the construction of delivery platforms for efficient BBB crossing and brain drug delivery.


Metal Nanoparticles , Nanoparticles , Endothelial Cells , Gold/pharmacology , Brain , Drug Delivery Systems/methods
5.
ACS Nano ; 17(16): 15905-15917, 2023 08 22.
Article En | MEDLINE | ID: mdl-37565626

Metal-organic frameworks (MOFs) show tremendous promise for drug delivery due to their structural and functional versatility. However, MOFs are usually used as biologically inert carriers in most cases. The creation of intrinsically immunostimulatory MOFs remains challenging. In this study, a facile and green synthesis method is proposed for the preparation of a manganese ion (Mn2+)-based immunostimulatory MOF (ISAMn-MOF) for cancer metalloimmunotherapy. ISAMn-MOF significantly facilitates the activation of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) related genes and signaling pathways in bone-marrow-derived dendritic cells (BMDCs). BMDCs treated with ISAMn-MOF secrete 4-fold higher type I interferon and 2- to 16-fold higher proinflammatory cytokines than those treated with equivalent MnCl2. ISAMn-MOF alone or its combination with immune checkpoint antibodies significantly suppresses tumor growth and metastasis and prolongs mouse survival. Mechanistic studies indicate that ISAMn-MOF treatment facilitates the infiltration of stimulatory immune cells in tumors and lymphoid organs. This study provides insight into the design of bioactive MOFs for improved cancer metalloimmunotherapy.


Metal-Organic Frameworks , Neoplasms , Mice , Animals , Metal-Organic Frameworks/pharmacology , Manganese/pharmacology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Neoplasms/drug therapy
6.
ACS Nano ; 17(10): 8966-8979, 2023 05 23.
Article En | MEDLINE | ID: mdl-37133900

Enabling macrophages to phagocytose tumor cells holds great potential for cancer therapy but suffers from tremendous challenges because the tumor cells upregulate antiphagocytosis molecules (such as CD47) on their surface. The blockade of CD47 alone is insufficient to stimulate tumor cell phagocytosis in solid tumors due to the lack of "eat me" signals. Herein, a degradable mesoporous silica nanoparticle (MSN) is reported to simultaneously deliver anti-CD47 antibodies (aCD47) and doxorubicin (DOX) for cancer chemo-immunotherapy. The codelivery nanocarrier aCD47-DMSN was constructed by accommodating DOX within the mesoporous cavity, while adsorbing aCD47 on the surface of MSN. aCD47 blocks the CD47-SIRPα axis to disable the "don't eat me" signal, while DOX induces immunogenic tumor cell death (ICD) for calreticulin exposure as an "eat me" signal. This design facilitated the phagocytosis of tumor cells by macrophages, which enhanced antigen cross-presentation and elicited efficient T cell-mediated immune response. In 4T1 and B16F10 murine tumor models, aCD47-DMSN generated a strong antitumor effect after intravenous injection by increasing tumor-infiltration of CD8+ T cells. Taken together, this study offers a nanoplatform to modulate the phagocytosis of macrophages for efficacious cancer chemo-immunotherapy.


Nanoparticles , Neoplasms , Mice , Animals , Calreticulin , CD8-Positive T-Lymphocytes , Phagocytosis , Neoplasms/metabolism , Immunotherapy , CD47 Antigen/metabolism
7.
Adv Drug Deliv Rev ; 196: 114793, 2023 05.
Article En | MEDLINE | ID: mdl-36963569

Surgery and drug therapy are the two principal options for cancer treatment. However, their clinical benefits are hindered by the difficulty of accurate location of the tumors and timely monitoring of the treatment efficacy of drugs, respectively. Rapid development of imaging techniques provides promising tools to address these challenges. Compared with conventional imaging techniques such as magnetic resonance imaging and computed tomography etc., fluorescence imaging exhibits high spatial resolution, real-time imaging capability, and relatively low costs devices. The advancements in fluorescent probes further accelerate the implementation of fluorescence imaging in tumor diagnosis and treatment monitoring. In particular, the emergence of site-specifically activatable fluorescent probes fits the demands of tumor delineation and real-time feedback of the treatment efficacy. A variety of small molecule probes or nanoparticle-based probes have been developed and explored for the above-mentioned applications. This review will discuss recent advances in fluorescent probes with a special focus on activatable nanoprobes and highlight the potential implementation of activatable nanoprobes in fluorescence imaging-guided surgery as well as imaging-guided drug therapy.


Nanoparticles , Neoplasms , Humans , Fluorescent Dyes , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Optical Imaging/methods , Tomography, X-Ray Computed
8.
Nano Lett ; 23(5): 1904-1913, 2023 03 08.
Article En | MEDLINE | ID: mdl-36801829

Cancer vaccines have received tremendous attention in cancer immunotherapy due to their capability to induce a tumor-specific immune response. However, their effectiveness is compromised by the insufficient spatiotemporal delivery of antigens and adjuvants in the subcellular level to induce a robust CD8+ T cell response. Herein, a cancer nanovaccine G5-pBA/OVA@Mn is prepared through multiple interactions of manganese ions (Mn2+), benzoic acid (BA)-modified fifth generation polyamidoamine (G5-PAMAM) dendrimer, and the model protein antigen ovalbumin (OVA). In the nanovaccine, Mn2+ not only exerts a structural function to assist OVA loading as well as its endosomal escape, but works as an adjuvant of stimulator of interferon genes (STING) pathway. These collaboratively facilitate the orchestrated codelivery of OVA antigen and Mn2+ into cell cytoplasm. Vaccination with G5-pBA/OVA@Mn not only shows a prophylactic effect, but also significantly inhibits growth against B16-OVA tumors, indicating its great potential for cancer immunotherapy.


Cancer Vaccines , Nanoparticles , Neoplasms , Humans , Animals , Mice , Manganese , Antigens , Adjuvants, Immunologic/therapeutic use , Neoplasms/therapy , Immunotherapy , Mice, Inbred C57BL , Nanoparticles/chemistry , Dendritic Cells
9.
Small Methods ; 7(5): e2201086, 2023 05.
Article En | MEDLINE | ID: mdl-36446639

Although immunotherapy of hepatocellular carcinoma using immune checkpoint inhibitors has achieved certain success, only a subset of patients benefits from this therapeutic strategy. The combination of immunostimulatory chemotherapeutics represents a promising strategy to enhance the effectiveness of immunotherapy. However, it is hampered by the poor delivery of conventional chemotherapeutics. Here, it is shown that H-ferritin nanocages loaded with doxorubicin (DOX@HFn) show potent chemo-immunotherapy in hepatocellular carcinoma tumor models. DOX@HFn is constructed with uniform size, high stability, favorable drug loading, and intracellular acidity-driven drug release. The receptor-mediated targeting of DOX@HFn to liver cancer cells promote cellular uptake and tumor penetration in vitro and in vivo. DOX@HFn triggers immunogenic cell death to tumor cells and promotes the subsequent activation and maturation of dendritic cells. In vivo studies in H22 subcutaneous hepatoma demonstrate that DOX@HFn significantly inhibits the tumor growth with >30% tumors completely eliminated, while alleviating the systemic toxicity of free DOX. DOX@HFn also exhibits robust antitumor immune response and tumoricidal effect in a more aggressive Hepa1-6 orthotopic liver tumor model, which is confirmed by the in situ magnetic resonance imaging and transcriptome sequencing. This study provides a facile and robust strategy to improve therapeutic efficacy of liver cancer.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Ferritins/therapeutic use , Immunogenic Cell Death , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Immunotherapy
10.
Biomaterials ; 290: 121827, 2022 11.
Article En | MEDLINE | ID: mdl-36228517

The development of chemoresistance is a major hurdle for the treatment of colorectal cancer (CRC), which contributes remarkably to the poor clinical prognosis. Nanodrug delivery systems show great potential in overcoming chemoresistance, but limited by the lack of identification of chemoresistance targets from cancer patients. In the present study, we enrolled chemotherapy-resistant or sensitive CRC patients and used the next-generation RNA sequencing to reveal that Asporin (ASPN) is highly expressed in tumor tissues from oxaliplatin (OXA)-resistant patients and closely correlated with a poor prognosis of CRC. Downregulation of ASPN reversed OXA resistance and promoted cell apoptosis both in vitro and in vivo. To overcome ASPN-mediated OXA resistance, we constructed a nanoparticle-based co-delivery system (denoted as PPO-siASPN) for simultaneous delivery of OXA and siRNA targeting ASPN (siASPN). PPO-siASPN not only facilitated the intracellular delivery of OXA through the enhanced cellular uptake, but effectively suppressed ASPN expression for synergistic antitumor activity in vitro and in vivo. In the more clinically relevant patient-derived xenograft (PDX) mouse model, systemic administration of PPO-siASPN achieved a remarkable therapeutic effect. This study uncovered the critical role of ASPN in causing OXA resistance in CRC patients and suggests a promising nanoformulation that may be more effective than current standard-of-care medications.


Colorectal Neoplasms , Nanoparticles , Humans , Mice , Animals , Oxaliplatin/therapeutic use , RNA, Small Interfering/therapeutic use , Drug Resistance, Neoplasm/genetics , Precision Medicine , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Nanoparticles/therapeutic use , Cell Line, Tumor
12.
Acta Biomater ; 147: 235-244, 2022 07 15.
Article En | MEDLINE | ID: mdl-35644327

Hydrogel as a local drug depot can increase drug concentration at the tumor site. However, conventional drug-loaded hydrogel is typically formed by direct dissolution of drug molecules inside the hydrogel, which usually suffers from limited drug retention and poor tumor penetration. In this study, a nanocomposite hydrogel consisting of oxaliplatin (OXA)-conjugated G5 polyamidoamine (G5-OXA) and oxidized dextran (Dex-CHO) is constructed to improve local drug delivery. The OXA-containing nanocomposite hydrogel (denoted as PDO gel) is injectable and could maintain in vivo up to more than three weeks, which increases drug retention in tumor tissues. More interestingly, G5-OXA released from the PDO gel show potent tumor penetration mainly through an active transcytosis process. In vivo antitumor studies in an orthotopic 4T1 tumor model show that PDO gel significantly inhibits primary tumor growth as well as the metastasis. In addition, the PDO gel can also activate the immunosuppressive tumor microenvironment through immunogenic cell death effect, and further improves therapeutic efficacy with the combination of PD-1 antibody. These results demonstrate that the nanocomposite hydrogel can simultaneously enhance the retention and penetration of chemotherapeutic drugs via the combination of both advantages of hydrogel and nanoparticles, which provides new insights for the design of local drug delivery systems. STATEMENT OF SIGNIFICANCE: Hydrogel represents an important class of local drug delivery depot. However, conventional drug-loaded hydrogel is usually achieved by direct dissolution of small drug molecules inside the hydrogel, which typically suffers from limited drug retention and poor tumor penetration. Herein, we developed a nanocomposite hydrogel, which could gradually degrade and release drug-conjugated small nanoparticles (∼ 6 nm) for improved tumor penetration through the combination of an active transcytosis process and a passive diffusion process. This nanocomposite hydrogel system improved tumor penetration and retention of drug in primary tumors as well as the drug deposition in lymph nodes, which significantly suppressed tumor growth and metastasis.


Nanoparticles , Neoplasms , Cell Line, Tumor , Humans , Hydrogels/chemistry , Nanogels , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/pathology , Oxaliplatin/therapeutic use , Treatment Outcome , Tumor Microenvironment
13.
Small ; 17(29): e2101208, 2021 07.
Article En | MEDLINE | ID: mdl-34145747

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a low survival rate. The therapeutic effect of chemotherapy and immunotherapy for PDAC is disappointing due to the presence of dense tumor stroma and immunosuppressive cells in the tumor microenvironment (TME). Herein, a tumor-penetrating nanoparticle is reported to modulate the deep microenvironment of PDAC for improved chemoimmunotherapy. The tumor pH-sensitive polymer is synthesized by conjugating N,N-dipentylethyl moieties and monomethoxylpoly(ethylene glycol) onto PAMAM dendrimer, into whose cavity a hydrophobic gemcitabine (Gem) prodrug is accommodated. They self-assemble into nanoparticles (denoted as SPN@Pro-Gem) with the size around 120 nm at neutral pH, but switch into small particles (≈8 nm) at tumor site to facilitate deep delivery of Gem into the tumor parenchyma. In addition to killing cancer cells that resided deeply in the tumor tissue, SPN@Pro-Gem could modulate the TME by reducing the abundance of tumor-associated macrophages and myeloid-derived suppressor cells as well as upregulating the expression level of PD-L1 of tumor cells. This collectively facilitates the infiltration of cytotoxic T cells into the tumors and renders checkpoint inhibitors more effective in previously unresponsive PDAC models. This study reveals a promising strategy for improving the chemoimmunotherapy of pancreatic cancer.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Humans , Immunotherapy , Nanomedicine , Pancreatic Neoplasms/drug therapy , Tumor Microenvironment
14.
Nat Commun ; 12(1): 1359, 2021 03 01.
Article En | MEDLINE | ID: mdl-33649336

Modulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an 'adaptor' while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.


Antibodies, Monoclonal/metabolism , Immunomodulation , Immunotherapy , Nanoparticles/chemistry , Neoplasms/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Immobilized Proteins/metabolism , Immunity , Killer Cells, Natural/immunology , Male , Mice, Inbred C57BL , Nanoparticles/ultrastructure , T-Lymphocytes/immunology
15.
Biomater Sci ; 9(7): 2508-2518, 2021 Apr 07.
Article En | MEDLINE | ID: mdl-33459733

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Sorafenib (sfb) is widely used in clinics for advanced HCC therapy. However, the therapeutic efficacy of sfb is suboptimal due to its poor water solubility, low bioavailability, and side effects. Here, we employed a clinically safe polymer poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) to prepare a nanoparticle (NP)-based sfb formulation (NP-sfb) and tested its antitumor effect in multiple HCC models. NP-sfb could achieve effective drug loading and remain stable under physiological conditions. NP-sfb could be taken up by HepG2, Hepa1-6, and H22 cells and could efficiently inhibit cell proliferation and/or promote cell apoptosis. In vivo studies indicated that NP-sfb showed significantly improved therapeutic efficacy compared with free-sfb at the same dose or even higher doses. Mechanistic studies demonstrated that NP-sfb not only inhibited tumor proliferation and angiogenesis but also stimulated the tumor microenvironment by reducing the infiltration of immunosuppressive myeloid cells and increasing the ratio of cytotoxic T cells. This study demonstrates that the NP-based formulation is a promising strategy to improve the clinical application of sfb.


Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Antineoplastic Agents/therapeutic use , Biological Availability , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Polymers/therapeutic use , Sorafenib , Tumor Microenvironment
16.
Small ; 16(46): e2004240, 2020 11.
Article En | MEDLINE | ID: mdl-33107142

Activation of the phagocytosis of macrophages to tumor cells is an attractive strategy for cancer immunotherapy, but the effectiveness is limited by the fact that many tumor cells express an increased level of anti-phagocytic signals (e.g., CD47 molecules) on their surface. To promote phagocytosis of macrophages, a pro-phagocytic nanoparticle (SNPACALR&aCD47 ) that concurrently carries CD47 antibody (aCD47) and a pro-phagocytic molecule calreticulin (CALR) is constructed to simultaneously modulate the phagocytic signals of macrophages. SNPACALR&aCD47 can achieve targeted delivery to tumor cells by specifically binding to the cell-surface CD47 and block the CD47-SIRPα pathway to inhibit the "don't eat me" signal. Tumor cell-targeted delivery increases the exposure of recombinant CALR on the cell surface and stimulates an "eat me" signal. Simultaneous modulation of the two signals enhances the phagocytosis of 4T1 tumor cells by macrophages, which leads to significantly improved anti-tumor efficacy in vivo. The findings demonstrate that the concurrent blockade of anti-phagocytic signals and activation of pro-phagocytic signals can be effective in macrophage-mediated cancer immunotherapy.


Nanoparticles , Neoplasms , Antigens, Differentiation , Humans , Immunotherapy , Macrophages , Neoplasms/therapy , Phagocytosis , Receptors, Immunologic
17.
Nano Lett ; 20(7): 4882-4889, 2020 07 08.
Article En | MEDLINE | ID: mdl-32551705

Tumor-infiltrating dendritic cells (TIDCs) are mostly immature and immunosuppressive, usually mediating immune inhibition. The utilization of cytosine-guanine oligodeoxynucleotides (CpG ODNs) to stimulate the activation of TIDCs has been demonstrated to be effective for improving antitumor immunity. However, a series of biological barriers has limited the efficacy of previous nanocarriers for delivering CpG to TIDCs. Herein, we developed a dual-sensitive dendrimer cluster-based nanoadjuvant for delivering CpG ODNs into TIDCs. We show that the tumor acidity triggers the rapid release of CpG conjugated polyamidoamine (PAMAM) dendrimers from the nanoadjuvant, thus facilitating its perfusion deep into tumors and phagocytosis by TIDCs. Thereafter, the reductive condition of the endolysosomes led to the subsequent release of CpG, which promotes the DCs activation and enhances antitumor immunotherapies. Programmable delivery of immune adjuvant efficiently overcomes the barriers for targeted delivery to TIDCs and provides a promising strategy for improving cancer immunotherapy.


Immunotherapy , Neoplasms , Adjuvants, Immunologic , Dendritic Cells , Guanine , Humans , Neoplasms/therapy
18.
J Mater Chem B ; 8(31): 6686-6696, 2020 08 12.
Article En | MEDLINE | ID: mdl-32579660

Engineering nanoparticles (NPs) as delivery systems of anticancer therapeutics has attracted tremendous attention in recent decades, and some nanoscale drug formulations have been approved for clinical use. However, their therapeutic efficacies are still limited by the presence of a series of biological barriers during the delivery process. Among these obstacles, tumor barriers are generally recognized as the bottleneck, because they dominate the NP extravasation from the tumor vasculature and penetration into the tumor parenchyma. Therefore, this review first discussed tumor barriers from two aspects: tumor vascular barriers and tumor stromal barriers. Pathological features of the two sets of barriers as well as their influence on the delivery efficacy were described. Then, we outlined strategies for engineering NPs to overcome these challenges: increasing extravasation through physical property optimization and tumor vascular targeting; and facilitating deep penetration through particle size manipulation, modulation of the tumor extracellular matrix, and some new mechanisms. This review will provide a critical perspective on engineering strategies for more efficient nanomedicine in oncology.


Drug Carriers/chemistry , Engineering/methods , Nanoparticles/chemistry , Neoplasms/blood supply , Neoplasms/pathology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism
19.
Biomater Sci ; 8(5): 1290-1297, 2020 Mar 07.
Article En | MEDLINE | ID: mdl-31899467

Primary central nervous system lymphoma (PCNSL) is a rare brain tumor. Its therapeutic efficacy is much lower than that of traditional lymphoma, largely due to the presence of the blood-brain barrier (BBB), which hinders the effective drug delivery and deposition on the disease site. Angiopep-2 (ANG) can target low-density lipoprotein receptor-related protein (LRP) on the surface of brain capillary endothelial cells (BCECs) and exhibits high BBB transport capability. In this study, we designed an ANG conjugated poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) (APP) nanoparticle to deliver doxorubicin (DOX) for the treatment of PCNSL. Our data indicated that the targeted APP nanoparticles showed significantly increased cellular uptake by BCECs compared with the control nanoparticles. In the intracranial SU-DHL-2-LUC lymphoma xenograft mice model, APP enhanced drug deposition in tumor tissues, and DOX-loaded APP (APP@DOX) exhibited a better therapeutic effect than free DOX and nontargeted PP@DOX, which significantly prolonged the survival time of mice.


Antibiotics, Antineoplastic/pharmacology , Central Nervous System Neoplasms/drug therapy , Doxorubicin/pharmacology , Lymphoma/drug therapy , Nanoparticles/chemistry , Peptides/chemistry , Animals , Antibiotics, Antineoplastic/chemical synthesis , Antibiotics, Antineoplastic/chemistry , Blood-Brain Barrier/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Disease Models, Animal , Doxorubicin/chemical synthesis , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Humans , Lactones/chemistry , Lymphoma/metabolism , Lymphoma/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Polyethylene Glycols/chemistry
20.
Chem Sci ; 11(20): 5323-5327, 2020 May 05.
Article En | MEDLINE | ID: mdl-34122990

Herein, a versatile strategy for the construction of biofunctional Janus particles (JPs) through the combination of Pickering emulsion and copper-free click chemistry is developed for the study of particle-mediated cell-cell interactions. A variety of biomolecules including bovine serum albumin (BSA), ferritin, transferrin (Tf), and anti-signal regulatory protein alpha antibodies (aSIRPα), etc., can be incorporated into the Janus platform in a spatially defined manner. JPs consisting of Tf and aSIRPα (Tf-SPA1-aSIRPα JPs) demonstrate a significantly improved binding affinity to either macrophages or tumor cells compared to their uniformly modified counterparts. More importantly, Tf-SPA1-aSIRPα JPs mediate more efficient phagocytosis of tumor cells by macrophages as revealed by real-time high-content confocal microscopy. This study demonstrates the potential advantages of JPs in mediating cell-cell interactions and may contribute to the emerging cancer immunotherapy.

...