Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Sci Total Environ ; 948: 174787, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009151

ABSTRACT

In this study, a first wall-to-wall comparison between the National Wetlands Inventory (NWI) and the National Land Cover Database (NLCD) was conducted across the entire conterminous United States (CONUS) to evaluate U.S. wetland loss conditions. Annually, around 26 km2 of wetlands are lost to impervious surfaces across the CONUS. Spatially, wetland loss is not evenly distributed, with 90 % of losses occurring in only 9 % of the land area, forming hotspots around expanding urban regions such as Houston, Jacksonville, and Naples. Over the past few decades, Florida experienced the highest wetland loss (5.73 km2/year) among all states, while Houston had the most wetland loss (2.54 km2/year) among all metropolitan regions. Stepwise multiple regression models identified population growth and its associated demand for new housing as the major drivers for wetland loss. Wetland loss per population increase is the highest (>15 m2/person) in most metropolitan regions around the East Coast and Gulf of Mexico. Unfortunately, current wetland loss hotspots will likely suffer further losses in future decades due to projected population growth, with Houston, Cape Coral, and Miami metropolitan regions having the greatest projected wetland loss of 89.15 km2, 34.35 km2, and 28.20 km2, respectively. This study has identified wetland loss hotspots and their drivers across the U.S. that were not possible in previous sample-based studies. The findings are critical in wetland management and protection across the U.S.

2.
Langmuir ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007726

ABSTRACT

The electromagnetic synergy has been proven to be highly effective in separating oil-water emulsions. However, the dynamic impact mechanism of electromagnetic fields on the internal structure of salt droplets remains unclear. In this study, the molecular dynamics (MD) simulation was used to investigate the molecular diffusion of salt ions and water molecules, as well as the dynamic behavior of droplets under the combined influence of electromagnetic fields. The results indicate that ions accumulate in the electromagnetic synergistic field, causing the deformation amplitude of droplets to be smaller than that in a single electric field. The magnetic field affects the energy of the system, when the magnetic field strength is between 1 and 5T, the nonbonded energy significantly increases nonlinearly; when the magnetic field strength is greater than 5T, the total energy of the system significantly changes. In addition, the viscosity of the medium is significantly lower when the intensity of the magnetic and electric fields is controlled within a specific range, providing a new way to regulate the fluidity of fluids.

3.
J Inorg Biochem ; 259: 112659, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38976937

ABSTRACT

Ruthenium(II/III) coordination compounds have gained widespread attention as chemotherapy drugs, photosensitizers, and photodynamic therapy reagents. Herein, a family of 11 novel coumarin-coordinated 8-hydroxyquinoline ruthenium(II/III) compounds, i.e., [RuII2(µ2-Cl)2(QL1a)2(DMSO)4] (YNU-4a = Yulin Normal University-4a), [RuII2(µ2-Cl)2(QL1b)2(DMSO)4] (YNU-4b), [RuII2(µ2-Cl)2(QL1c)2(DMSO)4] (YNU-4c), [RuII2(µ2-Cl)2(QL1d)2(DMSO)4]⋅2CH3OH (YNU-4d), [RuII(QL1e)2(DMSO)2] (YNU-4e), [RuIII(QL1e)2(QL3a)] (YNU-4f), [RuIII(QL1e)2(QL3b)] (YNU-4g), [RuIII(QL1e)2(QL3c)] (YNU-4h), [RuIICl2(H-QL3a)2(DMSO)2] (YNU-4i), [RuIICl2(H-QL3b)2(DMSO)2] (YNU-4j), and [RuIICl2(H-QL3c)2(DMSO)2] (YNU-4k), featuring the coligands 5,7-diiodo-8-hydroxyquinoline (H-QL1a), 5,7-dichloro-8-quinolinol (H-QL1b), 5-chloro-7-iodo-8-hydroxyquinolin (H-QL1c), 5,7-dibromo-8-hydroxyquinoline (H-QL1d), and 5,7-dichloro-8-hydroxy-2-methylquinoline (H-QL1e) and the main ligands 6,7-dichloro-3-pyridin-2-yl-chromen-2-one (H-QL3a), 6-bromo-3-pyridin-2-yl-chromen-2-one (H-QL3b), and 6-chloro-3-pyridin-2-yl-chromen-2-one (H-QL3c), respectively. The structure of compounds YNU-4a-YNU-4k was fully confirmed by conducting various spectroscopic analyses. The anticancer activity of YNU-4a-YNU-4k was evaluated in cisplatin-resistant A549/DDP lung cancer cells (LC549) versus normal embryonic kidney (HEK293) cells. Notably, compound YNU-4f bearing QL1e and QL3a ligands showed a more pronounced antiproliferative effect against LC549 cells (IC50 = 1.75 ± 0.09 µM) with high intrinsic selectivity toward LC549 cancer cells than YNU-4a-YNU-4e, H-QL1a-H-QL1e, cisplatin (PDD), YNU-4g-YNU-4k, and H-QL3a-H-QL3c. Additionally, a colocalization assay analysis of YNU-4e and YNU-4f showed that these two ruthenium(II/III) compounds were subcellularly accumulated in the mitochondria and other regions of the cytoplasm, where they induce mitophagy, adenosine triphosphate (ATP) reduction, mitochondrial respiratory chain complex I/IV(RC1/RC4) inhibition, and mitochondrial dysfunction. Accordingly, compounds YNU-4a-YNU-4k can be regarded as mitophagy inductors for the eradication of cisplatin-resistant LC549 cancer cells.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Coumarins , Oxyquinoline , Ruthenium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Oxyquinoline/chemistry , Oxyquinoline/pharmacology , Cell Line, Tumor , Animals , Apoptosis/drug effects , Mice
4.
Bioengineering (Basel) ; 11(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790312

ABSTRACT

BACKGROUND AND AIMS: Accurate recognition of endoscopic instruments facilitates quantitative evaluation and quality control of endoscopic procedures. However, no relevant research has been reported. In this study, we aimed to develop a computer-assisted system, EndoAdd, for automated endoscopic surgical video analysis based on our dataset of endoscopic instrument images. METHODS: Large training and validation datasets containing 45,143 images of 10 different endoscopic instruments and a test dataset of 18,375 images collected from several medical centers were used in this research. Annotated image frames were used to train the state-of-the-art object detection model, YOLO-v5, to identify the instruments. Based on the frame-level prediction results, we further developed a hidden Markov model to perform video analysis and generate heatmaps to summarize the videos. RESULTS: EndoAdd achieved high accuracy (>97%) on the test dataset for all 10 endoscopic instrument types. The mean average accuracy, precision, recall, and F1-score were 99.1%, 92.0%, 88.8%, and 89.3%, respectively. The area under the curve values exceeded 0.94 for all instrument types. Heatmaps of endoscopic procedures were generated for both retrospective and real-time analyses. CONCLUSIONS: We successfully developed an automated endoscopic video analysis system, EndoAdd, which supports retrospective assessment and real-time monitoring. It can be used for data analysis and quality control of endoscopic procedures in clinical practice.

5.
Life Sci ; 348: 122674, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692507

ABSTRACT

AIMS: Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS: To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS: We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE: Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.


Subject(s)
Bile Duct Neoplasms , Cell Movement , Cell Proliferation , Cholangiocarcinoma , Disease Progression , Epithelial-Mesenchymal Transition , Mice, Nude , Y-Box-Binding Protein 1 , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Animals , Mice , Cell Line, Tumor , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Ubiquitination , Mice, Inbred BALB C , Male , Endopeptidases/metabolism , Endopeptidases/genetics , Gene Expression Regulation, Neoplastic , Female
6.
Adv Sci (Weinh) ; 11(20): e2304441, 2024 May.
Article in English | MEDLINE | ID: mdl-38576170

ABSTRACT

The inflammatory damage caused by thrombus formation and dissolution can increase the risk of thrombotic complications on top of cell death and organ dysfunction caused by thrombus itself. Therefore, a rapid and precise thrombolytic therapy strategy is in urgent need to effectively dissolve thrombus and resist oxidation simultaneously. In this study, Ce-UiO-66, a cerium-based metal-organic framework (Ce-MOF) with reactive oxygen species (ROS) scavenging properties, encapsulated by low-immunogenic mesenchymal stem cell membrane with inflammation-targeting properties, is used to construct a targeted nanomedicine Ce-UiO-CM. Ce-UiO-CM is applied in combination with external ultrasound stimulation for thrombolytic therapy in rat femoral artery. Ce-UiO-66 has abundant Ce (III)/Ce (IV) coupling sites that react with hydrogen peroxide (H2O2) to produce oxygen, exhibiting catalase (CAT) activity. The multi-cavity structure of Ce-UiO-66 can generate electron holes, and its pore channels can act as micro-reactors to further enhance its ROS scavenging capacity. Additionally, the porous structure of Ce-UiO-66 and the oxygen produced by its reaction with H2O2 may enhance the cavitation effects of ultrasound, thereby improving thrombolysis efficacy.


Subject(s)
Cerium , Metal-Organic Frameworks , Reactive Oxygen Species , Thrombolytic Therapy , Animals , Cerium/chemistry , Cerium/pharmacology , Rats , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Thrombolytic Therapy/methods , Reactive Oxygen Species/metabolism , Disease Models, Animal , Thrombosis/drug therapy , Thrombosis/metabolism , Male , Rats, Sprague-Dawley , Hydrogen Peroxide/metabolism
7.
Environ Geochem Health ; 46(5): 166, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592562

ABSTRACT

Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0 mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.


Subject(s)
Seedlings , Triticum , Humans , Germination , Cadmium/toxicity , Microplastics , Plastics , Polyethylene , Seeds , Antioxidants
8.
J Basic Microbiol ; : e202400001, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679904

ABSTRACT

The ferric uptake regulator (Fur) is a global regulator that influences the expression of virulence genes in Klebsiella pneumoniae. Bioinformatics analysis suggests Fur may involve in iron acquisition via the identified regulatory box upstream of the yersiniabactin receptor gene fyuA. To observe the impact of the gene fyuA on the virulence of K. pneumoniae, the gene fyuA knockout strain and complementation strain were constructed and then conducted a series of phenotypic experiments including chrome azurol S (CAS) detection, crystal violet staining, and wax moth virulence experiment. To examine the regulatory relationship between Fur and the gene fyuA, green fluorescent protein (GFP) reporter gene fusion assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), gel migration assay (EMSA), and DNase I footprinting assay were used to clarify the regulatory mechanism of Fur on fyuA. CAS detection revealed that the gene fyuA could affect the generation of iron carriers in K. pneumoniae. Crystal violet staining experiment showed that fyuA could positively influence biofilm formation. Wax moth virulence experiment indicated that the deletion of the fyuA could weaken bacterial virulence. GFP reporter gene fusion experiment and RT-qPCR analysis revealed that Fur negatively regulated the expression of fyuA in iron-sufficient environment. EMSA experiment demonstrated that Fur could directly bind to the promoter region of fyuA, and DNase I footprinting assay further identified the specific binding site sequences. The study showed that Fur negatively regulated the transcriptional expression of fyuA by binding to upstream of the gene promoter region, and then affected the virulence of K. pneumoniae.

9.
Ying Yong Sheng Tai Xue Bao ; 35(2): 347-353, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523091

ABSTRACT

In recent years, PM2.5 pollution has become a most important source of air pollution. Prolonged exposure to high PM2.5 concentrations can give rise to severe health issues. Negative air ion (NAI) is an important indicator for measuring air quality, which is collectively known as the 'air vitamin'. However, the intricate and fluctuating meteorological conditions and vegetation types result in numerous uncertainties in the correlation between PM2.5 and NAI. In this study, we collected data on NAI, PM2.5, and meteorological elements through positioning observation during the period of June to September in 2019 and 2020 under the condition of relatively constant leaf area in Quercus variabilis forest, a typical forest in warm temperate zones. We investigated the spatiotemporal variation of PM2.5 and NAI under consistent meteorological conditions, established the correlation between PM2.5 and NAI, and explicated the impact mechanism of PM2.5 on NAI in natural conditions. The results showed that NAI decreased exponentially with the increases in natural PM2.5, with a significant negative correlation (y=1148.79x-0.123). The decrease rates of NAI in PM2.5 concentrations of 0-20, 20-40, 40-80, 80-100 and 100-120 µg·m-3 were 40.1%, 36.2%, 9.4%, 2.4%, 5.1% and 6.8%, respectively. Results of the sensitivity analysis showed that the PM2.5 concentration range of 0-40 µg·m-3 was the sensitive range that affected NAI. Our findings could provide a scientific basis for better understanding the response mechanisms of NAI to environmental factors.


Subject(s)
Air Pollutants , Air Pollution , Quercus , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , Forests , Environmental Monitoring/methods , China
10.
Cell Rep ; 43(3): 113877, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421869

ABSTRACT

Combination therapy (lenvatinib/programmed death-1 inhibitor) is effective for treating unresectable hepatocellular carcinoma (uHCC). We reveal that responders have better overall and progression-free survival, as well as high tumor mutation burden and special somatic variants. We analyze the proteome and metabolome of 82 plasma samples from patients with hepatocellular carcinoma (HCC; n = 51) and normal controls (n = 15), revealing that individual differences outweigh treatment differences. Responders exhibit enhanced activity in the alternative/lectin complement pathway and higher levels of lysophosphatidylcholines (LysoPCs), predicting a favorable prognosis. Non-responders are enriched for immunoglobulins, predicting worse outcomes. Compared to normal controls, HCC plasma proteins show acute inflammatory response and platelet activation, while LysoPCs decrease. Combination therapy increases LysoPCs/phosphocholines in responders. Logistic regression/random forest models using metabolomic features achieve good performance in the prediction of responders. Proteomic analysis of cancer tissues unveils molecular features that are associated with side effects in responders receiving combination therapy. In conclusion, our analysis identifies plasma features associated with uHCC responders to combination therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Proteomics , Liver Neoplasms/drug therapy , Combined Modality Therapy
11.
J Hazard Mater ; 465: 133466, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219583

ABSTRACT

Plant autotoxicity is considered to be one of the important causes of continuous cropping obstacles in modern agriculture, which accumulates a lot of allelochemicals and xenobiotics and is difficult to solve effectively. To overcome tobacco continuous obstacles, a strain Pigmentiphaga kullae CHJ604 isolated from the environment can effectively degrade these compounds in this study. CHJ604 strain can degrade 11 types of autotoxicity allelochemicals and xenobiotics (1646.22 µg/kg) accumulated in the soil of ten-years continuous cropping of tobacco. The 11 allelochemicals and xenobiotics significantly reduced Germination Percentage (GP), Germination Index (GI), and Mean Germination Time (MGT) of tobacco seeds, and inhibited the development of leaves, stems, and roots. These negative disturbances can be eliminated by CHJ604 strain. The degradation pathways of 11 allelochemicals and xenobiotics were obtained by whole genome sequence and annotation of CHJ604 strain. The heterologous expression of a terephthalate 1,2-dioxygenase can catalyze 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxybenzaldehyde, and 4-hydroxy-3-methoxy-benzaldehyde, respectively. The phthalate 4,5-dioxygenase can catalyze phthalic acid, diisobutyl phthalate, and dibutyl phthalate. These two enzymes are conducive to the simultaneous degradation of multiple allelochemicals and xenobiotics by strain CHJ604. This study provides new insights into the biodegradation of autotoxicity allelochemicals and xenobiotics as it is the first to describe a degrading bacterium of 11 types of allelochemicals and xenobiotics and their great potential in improving tobacco continuous obstacles.


Subject(s)
Alcaligenaceae , Xenobiotics , Pheromones/metabolism , Alcaligenaceae/metabolism , Soil
12.
Nat Commun ; 15(1): 310, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182595

ABSTRACT

The increase in intense tropical cyclone (TC) activity across the western North Pacific (WNP) has often been attributed to a warming ocean. However, it is essential to recognize that the tropical WNP region already boasts high temperatures, and a marginal increase in oceanic warmth due to global warming does not exert a significant impact on the potential for TCs to intensify. Here we report that the weakened vertical wind shear is the primary driver behind the escalating trend in TC intensity within the summer monsoon trough of the tropical WNP, while local ocean surface and subsurface thermodynamic factors play a minor role. Through observational diagnoses and numerical simulations, we establish that this weakening of the vertical wind shear is very likely due to the increase in temperature of the Tibetan Plateau. With further warming of the Tibetan Plateau under the Representative Concentration Pathway 4.5 scenario, the projected TCs will likely become stronger.

13.
J Inorg Biochem ; 251: 112443, 2024 02.
Article in English | MEDLINE | ID: mdl-38100902

ABSTRACT

Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO3)]·CH3OH (NQ3), [Cu(ONQ)(QD2)(NO3)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO3) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC50 value of 0.17 ± 0.05 µM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Humans , Cisplatin/pharmacology , Copper/chemistry , Coordination Complexes/chemistry , Oxyquinoline , 2,2'-Dipyridyl/chemistry , Zinc/chemistry , Phenanthrolines/pharmacology , Antineoplastic Agents/chemistry , Ligands
14.
Front Microbiol ; 14: 1276951, 2023.
Article in English | MEDLINE | ID: mdl-38111640

ABSTRACT

Introduction: Cholesterol gallstone disease is a prevalent condition that has a significant economic impact. However, the role of the bile microbiome in its development and the host's responses to it remain poorly understood. Methods: In this study, we conducted a comprehensive analysis of microbial and human bile proteins in 40 individuals with either gallstone disease or gallbladder polyps. We employed a combined proteomic and metaproteomic approach, as well as meta-taxonomic analysis, functional pathway enrichment, and Western blot analyses. Results: Our metaproteomic analysis, utilizing the lowest common ancestor algorithm, identified 158 microbial taxa in the bile samples. We discovered microbial taxa that may contribute to gallstone formation, including ß-glucuronidase-producing bacteria such as Streptococcus, Staphylococcus, and Clostridium, as well as those involved in biofilm formation like Helicobacter, Cyanobacteria, Pseudomonas, Escherichia coli, and Clostridium. Furthermore, we identified 2,749 human proteins and 87 microbial proteins with a protein false discovery rate (FDR) of 1% and at least 2 distinct peptides. Among these proteins, we found microbial proteins crucial to biofilm formation, such as QDR3, ompA, ndk, pstS, nanA, pfIB, and dnaK. Notably, QDR3 showed a gradual upregulation from chronic to acute cholesterol gallstone disease when compared to polyp samples. Additionally, we discovered other microbial proteins that enhance bacterial virulence and gallstone formation by counteracting host oxidative stress, including sodB, katG, rbr, htrA, and ahpC. We also identified microbial proteins like lepA, rtxA, pckA, tuf, and tpiA that are linked to bacterial virulence and potential gallstone formation, with lepA being upregulated in gallstone bile compared to polyp bile. Furthermore, our analysis of the host proteome in gallstone bile revealed enhanced inflammatory molecular profiles, including innate immune molecules against microbial infections. Gallstone bile exhibited overrepresented pathways related to blood coagulation, folate metabolism, and the IL-17 pathway. However, we observed suppressed metabolic activities, particularly catabolic metabolism and transport activities, in gallstone bile compared to polyp bile. Notably, acute cholelithiasis bile demonstrated significantly impaired metabolic activities compared to chronic cholelithiasis bile. Conclusion: Our study provides a comprehensive metaproteomic analysis of bile samples related to gallstone disease, offering new insights into the microbiome-host interaction and gallstone formation mechanism.

15.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2644-2654, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37897271

ABSTRACT

We examined the responses of physiological and leaf anatomic structural characteristics of six Helleborus orientalis cultivars to different degrees of drought stress. A membership function was used to evaluate drought resis-tance and identify physiological and leaf anatomical indicators that exhibited a stronger correlation with drought tolerance. The results showed that leaf thickness, leaf area per unit mass and soluble protein levels of the six cultivars significantly decreased with the increases of drought stress. Net photosynthetic rate, stomatal conductance, and transpiration rate of leaves increased first and then decreased, while the intercellular CO2 concentration decreased. The relative electrical conductivity, MDA, and H2O2 contents of leaves were increased. Soluble saccharide and proline contents, and antioxidant enzyme activities were first elevated and then decreased. With the increases of drought stress, the ratio of palisade tissue thickness to sponge tissue thickness and stomatal density increased. Key indicators and relativities in evaluating drought resistance of those cultivars were proline, soluble sugars, and the ratio of palisade tissue thickness to sponge tissue thickness. H. orientalis 'Anemone Red' and H. orientalis 'Ane-mone Red spotted' had better drought resistance, which could be the excellent parental materials for the cultivation of new drought-resistant cultivars in the future.


Subject(s)
Droughts , Helleborus , Drought Resistance , Helleborus/metabolism , Hydrogen Peroxide , Photosynthesis/physiology , Plant Leaves/physiology , Antioxidants/metabolism , Proline , Stress, Physiological , Water/physiology
16.
Environ Sci Pollut Res Int ; 30(44): 99666-99674, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37620694

ABSTRACT

Negative air ion (NAI) is an important index for measuring air quality and has been widely recognized to be influenced by photosynthesis processes. However, vegetation type and light intensity are also known to impact NAI, contributing to significant uncertainties in the relationship between light and NAI. In this paper, we selected Pinus bungeana, Platycladus orientalis and Buxus sinica as research subjects and obtained their NAI, light intensity, and meteorological data through synchronous observation under the relatively stable condition of the phytotron. We analyzed the change characteristics of NAI and the difference of NAI production ability in needle and broadleaf vegetation under different light intensities. Finally, we determined the relationship and underlying mechanism governing light intensity and NAI using diverse tree species. The results showed that the influence of light on NAI was significant. In the environment without vegetation, the influence of different light intensities on NAI was not significant, and the mean NAI concentration was 310 ions·cm-3. Conversely, in the presence of vegetation, NAI showed a "single-peak" trend with increasing light intensity. The NAI concentration of the three tree species was significantly higher than under different light intensities when vegetation was not present. The NAI promoting ability of P. bungeana was the highest (675 ions·cm-3), followed by P. orientalis (478 ions·cm-3) and B. sinica (430 ions·cm-3), which increased by 117.5%, 53.9% and 38.6% compared to the environment without vegetation. The NAI growth rate was significantly different between needle and broadleaf vegetation based on the specific tridimensional green biomass. Additionally, the NAI growth rates of P. bungeana and P. orientalis were 647 and 295 ions·cm-3·m-3, respectively, which were 3.06 and 1.39 times that of B. sinica (211 ions·cm-3·m-3). The piecewise equation fitting effect of NAI and light intensity was better for different tree species, the determination coefficients (R2) of P. bungeana, P. orientalis and B. sinica were 0.926, 0.916 and 0.880, and the root mean square errors (RMSE) were 7.157, 6.008 and 5.389 ion·cm-3, respectively. Altogether, our study provides a theoretical basis as well as technical support for the construction of healthy vegetation stands, the selection of preferred tree species, and the optimization of vegetation models, and promotes air quality and the provision of ecosystem functions and services.


Subject(s)
Ecosystem , Trees , Humans , Ions , Biomass , Light
17.
Front Oncol ; 13: 1168078, 2023.
Article in English | MEDLINE | ID: mdl-37564928

ABSTRACT

Introduction: This cross-sectional study evaluated the involvement of patients with advanced colorectal cancer (CRC) in treatment decision-making, assessed the treatment efficacy according to their self-reports, and investigated the influencing factors. Methods: Patients with advanced CRC were recruited from 19 hospitals from March 2020 to March 2021 by a multi-stage multi-level sampling method. A self-designed questionnaire was used to collect demographic and clinical characteristics, involvement of CRC patients in treatment decision-making, treatment methods, and self-reported efficacy. Univariate and unordered multinomial logistic regression analyses were used to evaluate the factors affecting the involvement in treatment decision-making and self-reported efficacy. Results: We enrolled 4533 patients with advanced CRC. The average age at diagnosis was 58.7 ± 11.8 years. For the treatment method, 32.4% of patients received surgery combined with chemotherapy, 13.1% of patients underwent surgery combined with chemotherapy and targeted therapy, and 9.7% of patients were treated with surgery alone. For treatment decision-making, 7.0% of patients were solely responsible for decision-making, 47.0% of patients shared treatment decision-making with family members, 19.0% of patients had family members solely responsible for treatment decision-making, and 27.0% of patients had their physicians solely responsible for treatment decision-making. Gender, age, education level, family income, marital status, treatment cost, hospital type, and treatment method were significantly associated with the involvement of patients in treatment decision-making. A total of 3824 patients submitted self-reported efficacy evaluations during treatment. The percentage of patients with good self-reported efficacy was 76.5% (for patients treated for the first time), 61.7% (for patients treated for the second time), and 43.2% (for patients treated after recurrence and metastasis), respectively. Occupation, education level, average annual family income, place of residence, time since cancer diagnosis, hospital type, clinical stage, targeted therapy, and involvement in treatment decision-making were the main influencing factors of self-reported efficacy of treatment. Discussion: Conclusively, CRC patients are not highly dominant in treatment decision-making and more likely to make treatment decisions with their family and doctors. Timely and effective communication between doctors and patients can bolster patient involvement in treatment decision-making.

18.
Int J Public Health ; 68: 1606091, 2023.
Article in English | MEDLINE | ID: mdl-37465051

ABSTRACT

Objectives: To explore the utilization, barriers, and factors associated with the targeted treatment of Chinese metastatic colorectal cancer (mCRC) patients. Methods: A total of 1,688 mCRC patients from 19 hospitals in 14 cities were enrolled from March 2020 to March 2021 using stratified, multistage cluster sampling. The use of targeted therapy and any barriers patients experienced were collected. Logistic regression analyses were conducted to identify the factors associated with initiating targeted treatment. Results: About 51.6% of the patients initiated targeted therapy, of whom 44.5%, 20.2%, and 35.2% started first-, second-, and third-line treatment, respectively. The most reported barriers were high medical costs and a lack of belief in the efficacy of targeted therapy. Patients treated in the general hospital, diagnosed at an older age, less educated, and who had a lower family income, no medical insurance, poor health-related quality of life, metastasis outside the liver/lung or systemic metastasis, a shorter duration of mCRC were less likely to initiate targeted therapy. Conclusion: Reduced medical costs and interventional education to improve public awareness could facilitate the use of targeted treatment for mCRC.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Quality of Life , Costs and Cost Analysis , Hospitals
19.
Ecotoxicol Environ Saf ; 262: 115215, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37421785

ABSTRACT

Southwestern China has the largest geological phosphorus-rich mountain in the world, which is seriously degraded by mining activities. Understanding the trajectory of soil microbial recovery and identifying the driving factors behind such restoration, as well as conducting corresponding predictive simulations, can be instrumental in facilitating ecological rehabilitation. Here, high-throughput sequencing and machine learning-based approaches were employed to investigate restoration chronosequences under four restoration strategies (spontaneous re-vegetation with or without topsoil; artificial re-vegetation with or without the addition of topsoil) in one of the largest and oldest open-pit phosphate mines worldwide. Although soil phosphorus (P) is extremely high here (max = 68.3 mg/g), some phosphate solubilizing bacteria and mycorrhiza fungi remain as the predominant functional types. Soil stoichiometry ratios (C:P and N:P) closely relate to the bacterial variation, but soil P content contributes less to microbial dynamics. Meanwhile, as restoration age increases, denitrifying bacteria and mycorrhizal fungi significantly increased. Significantly, based on partial least squares path analysis, it was found that the restoration strategy is the primary factor that drives soil bacterial and fungal composition as well as functional types through both direct and indirect effects. These indirect effects arise from factors such as soil thickness, moisture, nutrient stoichiometry, pH, and plant composition. Moreover, its indirect effects constitute the main driving force towards microbial diversity and functional variation. Using a hierarchical Bayesian model, scenario analysis reveals that the recovery trajectories of soil microbes are contingent upon changes in restoration stage and treatment strategy; inappropriate plant allocation may impede the recovery of the soil microbial community. This study is helpful for understanding the dynamics of the restoration process in degraded phosphorus-rich ecosystems, and subsequently selecting more reasonable recovery strategies.

20.
J Phys Chem B ; 127(25): 5668-5675, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37311091

ABSTRACT

Electromagnetic synergy is a more effective physical method than a single AC electric field (ACEF) to enhance oil-water separation. However, the electrocoalescence behavior of droplets dispersed with salt ions in oil under the synergistic electromagnetic field (EMSF) still lacks research. Herein, the evolution coefficient of liquid bridge diameter (C1) characterizes the growth rate of the liquid bridge diameter, a series of Na2CO3-dispersed droplets with different ionic strengths were prepared, and C1 values of droplets under ACEF and EMSF were compared. Micro high-speed experiments revealed that C1 under ACEF is larger than C1 under EMSF. In particular, when σ = 100 µS·cm-1and E = 629.73 kV·m-1, C1 under the ACEF is 15% larger than C1 under EMSF. Additionally, the theory of ion enrichment is put forward, which explains the influence of salt ions on ζ potential and total surface potential in EMSF. This study provides guidance for designing high-performance devices by introducing electromagnetic synergy in water-in-oil emulsion treatment.

SELECTION OF CITATIONS
SEARCH DETAIL