Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 599
1.
PLoS Genet ; 20(6): e1011326, 2024 Jun.
Article En | MEDLINE | ID: mdl-38857279

The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.


Cell Adhesion , Cell Movement , Hedgehog Proteins , Myosin Type II , Signal Transduction , Animals , Mice , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cell Adhesion/genetics , Myosin Type II/metabolism , Myosin Type II/genetics , Cell Movement/genetics , Epithelium/metabolism , Morphogenesis/genetics , Tooth/metabolism , Tooth/growth & development , Epithelial Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Gene Expression Regulation, Developmental
2.
Article En | MEDLINE | ID: mdl-38922348

This study aimed to compare and rank the effectiveness of optimal exercise intensity in improving executive function in patients with ADHD (Attention deficit hyperactivity disorder, ADHD) through a comprehensive comparison of direct and indirect evidence. A systematic search was performed in five electronic databases to explore the optimal exercise intensity for improving executive function in patients with ADHD by directly and indirectly comparing a variety of exercise intervention intensities. In addition, the isolated effects of exercise on improving executive function in patients with ADHD were explored through classical meta-analysis of paired direct comparisons. Twenty-nine studies were retrieved and included in this study. Classical paired meta-analysis showed that for the patients with ADHD in the age group of 7-17 years, statistical difference was observed for all the parameters of exercise interventions (intensity, frequency, period, and training method), the three dimensions of executive function, the use of medication or not, the high and low quality of the methodological approach. Network meta-analysis showed that high-intensity exercise training was optimal for improving working memory (97.4%) and inhibitory function (85.7%) in patients with ADHD. Meanwhile, moderate-intensity exercise training was optimal for improving cognitive flexibility (77.3%) in patients with ADHD. Moderate to high intensity exercise training shows potential for improving executive function in these patients. Therefore, we recommend applying high-intensity exercise intervention to improve executive function in patients with ADHD to achieve substantial improvement.

3.
J Chem Inf Model ; 2024 Jun 24.
Article En | MEDLINE | ID: mdl-38913174

Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.

4.
Front Microbiol ; 15: 1373597, 2024.
Article En | MEDLINE | ID: mdl-38841055

Shiraia bambusicola is a typical parasitic medicinal fungus of the family Shiraiaceae. The fruiting bodies of S. bambusicola cannot be cultivated artificially, and active substances can be effectively produced via fermentation. The mechanism of conidia production is a research hotspot in the industrial utilization and growth development of S. bambusicola. This study is the first to systematically study the proteomics of conidiospore formation from S. bambusicola. Near-spherical conidia were observed and identified by internal transcribed spacer (ITS) sequence detection. A total of 2,840 proteins were identified and 1,976 proteins were quantified in the mycelia and conidia of S. bambusicola. Compared with mycelia, 445 proteins were differentially expressed in the conidia of S. bambusicola, with 165 proteins being upregulated and 280 proteins being downregulated. The Gene Ontology (GO) annotation results of differential proteomics showed that the biological process of S. bambusicola sporulation is complex. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the differential proteins were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and other processes. Our in-depth speculative analysis showed that proteins related to carbohydrate metabolism were differentially expressed in conidiospore formation of S. bambusicola, suggesting the involvement of saccharides. Conidiation may increase the synthesis and release of ethanol and polysaccharide proteins such as glycoside hydrolase (GH), suppress host immunity, and facilitate S. bambusicola to infect and colonize of the host. In-depth analysis of differential proteomes will help reveal the molecular mechanism underlying the conidiospore formation of S. bambusicola, which has strong theoretical and practical significance.

5.
Trop Med Infect Dis ; 9(5)2024 May 12.
Article En | MEDLINE | ID: mdl-38787044

The purpose of this study is to clarify the role of IL-33 in the immune response to angiostrongyliasis, especially in terms of antibody production and isotype switching. In our experiment, C57BL/6 mice were each infected with 35 infectious larvae and were divided into groups that received an intraperitoneal injection of IL-33, anti-IL-33 monoclonal antibody (mAb), or anti-ST2 mAb 3 days post-infection (dpi) and were subsequently administered booster shots at 5-day intervals with the same dose. Serum samples from each group were collected weekly for ELISA assays. The levels of total IgG, IgG1, and IgG3 were significantly increased in A. cantonensis-infected mice that were treated with IL-33, and the levels decreased significantly in infected groups treated with anti-IL-33 or anti-ST2 mAb. These results suggest that IL-33 may play a critical role in the pathogenesis of human angiostrongyliasis and could be useful for understanding protective immunity against this parasitic infection.

6.
Kidney Int ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38782199

COL4A3/A4/A5 mutations have been identified as critical causes of Alport syndrome and other genetic chronic kidney diseases. However, the underlying pathogenesis remains unclear, and specific treatments are lacking. Here, we constructed a transgenic Alport syndrome mouse model by generating a mutation (Col4a3 p.G799R) identified previously from one large Alport syndrome family into mice. We observed that the mutation caused a pathological decrease in intracellular and secreted collagen IV α3α4α5 heterotrimers. The mutant collagen IV α3 chains abnormally accumulated in the endoplasmic reticulum and exhibited defective secretion, leading to persistent endoplasmic reticulum stress in vivo and in vitro. RNA-seq analysis revealed that the MyD88/p38 MAPK pathway plays key roles in mediating subsequent inflammation and apoptosis signaling activation. Treatment with tauroursodeoxycholic acid, a chemical chaperone drug that functions as an endoplasmic reticulum stress inhibitor, effectively suppressed endoplasmic reticulum stress, promoted secretion of the α3 chains, and inhibited the activation of the MyD88/p38 MAPK pathway. Tauroursodeoxycholic acid treatment significantly improved kidney function in vivo. These results partly clarified the pathogenesis of kidney injuries associated with Alport syndrome, especially in glomeruli, and suggested that tauroursodeoxycholic acid might be useful for the early clinical treatment of Alport syndrome.

7.
Heliyon ; 10(8): e29253, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38644843

The cigarette filter is an essential component of modern cigarettes and studying the flow distribution within the cigarette filter is of great significance in reducing the harm of cigarettes and optimizing smoking sensations. As the object of numerical simulation research, a three-dimensional model of the cigarette was accurately constructed through micro-CT reverse engineering, achieving a scanning accuracy of 4.05 µm. An overall porous media model of the cigarette filter was established to characterize the pressure distribution inside the filter. Based on the three-dimensional reconstruction, a local simulation model of the cavity-filtered filter was created by extracting a 1/36 geometric model. The simulation results of the overall porous media model of the cigarette filter were used as the pressure boundary conditions for the local simulation model of the cavity-filtered filter, and the effects of the wrapped paper and cavity on the flow field were analyzed. The results show that the simulated pressure drop in the overall porous media model of the cigarette filter had a deviation of less than 3.5% compared to the experimental results. This suggests that the porous media model can effectively predict the changes in pressure drop within the filter. When both wrapped paper and cavity were present, the velocity at the interface between acetate fiber and wrapped paper increased by 141.54%, while the pressure approached 0 Pa. Similarly, at the interface between acetate fiber and cavity, the velocity increased by 130.77%. It indicates that both wrapped paper and cavity significantly influenced the flow field characteristics within the cigarette filter. Additionally, as the porosity of the wrapped paper gradually increased from 0.69 to 0.99 in the radial direction, the fluid velocity increased by 14.46%, while the fluid pressure decreased by 29.09%. These changes were particularly evident when the porosity was below 0.87.

8.
Front Microbiol ; 15: 1332497, 2024.
Article En | MEDLINE | ID: mdl-38585704

Mastitis causes significant losses in the global dairy industry, and the health of animals has been linked to their intestinal microbiota. To better understand the relationship between gastrointestinal microbiota and mastitis in dairy cows, we collected blood, rumen fluid, and fecal samples from 23 dairy cows, including 13 cows with mastitis and 10 healthy cows. Using ELISA kit and high-throughput sequencing, we found that cows with mastitis had higher concentrations of TNF-α, IL-1, and LPS than healthy cows (p < 0.05), but no significant differences in microbiota abundance or diversity (p > 0.05). Principal coordinate analysis (PCOA) revealed significant differences in rumen microbial structure between the two groups (p < 0.05), with Moryella as the signature for rumen in cows with mastitis. In contrast, fecal microbial structure showed no significant differences (p > 0.05), with Aeriscardovia, Lactococcus, and Bacillus as the signature for feces in healthy cows. Furthermore, the results showed distinct microbial interaction patterns in the rumen and feces of cows with mastitis compared to healthy cows. Additionally, we observed correlations between the microbiota in both the rumen and feces of cows and blood inflammatory indicators. Our study sheds new light on the prevention of mastitis in dairy cows by highlighting the relationship between gastrointestinal microbiota and mastitis.

9.
Infect Drug Resist ; 17: 1515-1521, 2024.
Article En | MEDLINE | ID: mdl-38645890

We reported a 51-year-old male electric welder with stage I pneumoconiosis, who had no significant cough, sputum, fever, chest pain, or other discomfort. However, regular physical examination at our hospital revealed bilateral pulmonary nodules with cavity formation. Blood routine, liver or kidney function, and infection-related biomarkers, including interleukin-6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), and procalcitonin (PCT), were normal. Sputum and alveolar lavage fluid (BALF) acid-fast bacilli (AFB) smears, BALF Mycobacterium tuberculosis (TB) PCR, and T-SPOT.TB were negative. The nucleic acid sequence of Mycobacterium europaeum was detected by BALF metagenomic next-generation sequencing (mNGS), which was confirmed by the subsequent positive culture for NTM. Considering stable conditions, no significant discomfort, and no significant changes in the lung lesion, the patient was diagnosed with inactive nontuberculous mycobacterial pulmonary disease (NTM-PD).

10.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592508

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Kluyveromyces , Succinic Acid , Kluyveromyces/genetics , Gene Expression Profiling , Transcriptome
11.
J Psychiatr Res ; 174: 26-45, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608550

OBJECTIVE: Examining the relationship between the responses of a number of different cognitive trainings on cognitive functioning in middle-aged and elderly patients with mild cognitive impairment. METHODS: Randomized controlled experimental studies published publicly from the time of inception to October 30, 2023 were searched through Web of Science, PubMed, Embase, and Cochrane library databases. Traditional and network meta-analyses were performed using Stata 17.0 software. RESULTS: Fifty papers on 4 types of cognitive training were included. Traditional meta-analysis showed that virtual reality training (SMD = 0.53, 95%CI: [0.36,0.70], P = 0.00), neuropsychological training (SMD = 0.44, 95%CI: [0.18,0.70], P = 0.00), cognitive strategy training (SMD = 0.26, 95%CI: [0.16,0.36], P = 0.00), and cognitive behavioral therapy (SMD = 0.25, 95%CI: [0.08,0.41], P = 0.00) all had significant improvement effects on the cognitive function of middle-aged and elderly patients with mild cognitive impairment. Network meta-analysis revealed neuropsychological training as the best cognitive training, and subgroup analysis of cognitive function subdimensions showed that neuropsychological training had the best effects on working memory, lobal cognitive function, memory, and cognitive flexibility improvement. Meanwhile, virtual reality training had the best effects on processing speed, verbal ability, overall executive function, spatial cognitive ability, and attention improvement. CONCLUSION: Cognitive training can significantly improve the cognitive function of middle-aged and elderly patients with mild cognitive impairment, and neuropsychological training is the best intervention, most effective in interventions lasting more than 8 weeks.


Cognitive Behavioral Therapy , Cognitive Dysfunction , Network Meta-Analysis , Humans , Cognitive Dysfunction/therapy , Cognitive Dysfunction/rehabilitation , Cognitive Dysfunction/etiology , Cognitive Behavioral Therapy/methods , Cognitive Remediation/methods , Aged , Middle Aged , Outcome Assessment, Health Care
12.
Toxins (Basel) ; 16(3)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38535814

Shiga-toxin-producing Escherichia coli (STEC) causes a wide spectrum of diseases including hemorrhagic colitis and hemolytic uremic syndrome (HUS). The current Food Safety Inspection Service (FSIS) testing methods for STEC use the Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) protocol, which includes enrichment, cell plating, and genomic sequencing and takes time to complete, thus delaying diagnosis and treatment. We wanted to develop a rapid, sensitive, and potentially portable assay that can identify STEC by detecting Shiga toxin (Stx) using the CANARY (Cellular Analysis and Notification of Antigen Risks and Yields) B-cell based biosensor technology. Five potential biosensor cell lines were evaluated for their ability to detect Stx2. The results using the best biosensor cell line (T5) indicated that this biosensor was stable after reconstitution with assay buffer covered in foil at 4 °C for up to 10 days with an estimated limit of detection (LOD) of ≈0.1-0.2 ng/mL for days up to day 5 and ≈0.4 ng/mL on day 10. The assay detected a broad range of Stx2 subtypes, including Stx2a, Stx2b, Stx2c, Stx2d, and Stx2g but did not cross-react with closely related Stx1, abrin, or ricin. Additionally, this assay was able to detect Stx2 in culture supernatants of STEC grown in media with mitomycin C at 8 and 24 h post-inoculation. These results indicate that the STEC CANARY biosensor developed in this study is sensitive, reproducible, specific, rapid (≈3 min), and may be applicable for surveillance of the environment and food to protect public health.


Abrin , Shiga Toxin 2 , Escherichia coli , Shiga Toxin , Biological Assay
13.
J Diabetes Investig ; 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38426644

Insulin-deficient (type 1) diabetes is treated by providing insulin to maintain euglycemia. The current standard of care is a quasi-closed loop integrating automated insulin delivery with a continuous glucose monitoring sensor. Cell replacement technologies are advancing as an alternative treatment and have been tested as surrogates to cadaveric islets in transplants. In addition, immunomodulatory treatments to delay the onset of type 1 diabetes in high-risk (stage 2) individuals have gained regulatory approval. We have pioneered a cell conversion approach to restore insulin production through pharmacological conversion of intestinal epithelial cells into insulin-producing cells. We have advanced this approach along a translational trajectory through the discovery of small molecule forkhead box protein O1 inhibitors. When administered to different rodent models of insulin-deficient diabetes, these inhibitors have resulted in robust glucose-lowering responses and generation of insulin-producing cells in the gut epithelium. We review past work and delineate a path to human clinical trials.

14.
Pak J Med Sci ; 40(3Part-II): 467-472, 2024.
Article En | MEDLINE | ID: mdl-38356806

Objective: To explore the changes of serum-related indexes at different time points, so as to identify the critical time of converting from simple premature thelarche (PT) to idiopathic central precocious puberty (ICPP). Methods: This is a retrospective study. The subjects of the study were 50 girls with PT who were admitted to the Children's Hospital of Hebei Province from January 2019 to September 2020. The enrolled 50 children were divided into the conversion group(n=12) and the non-conversion group(n=38) according to whether PT was converted into ICPP during follow-up. Furthermore, the levels of serum-related indexes and uterine and ovarian volumes were compared after the diagnosis of PT. Results: The IGF-1 and IGFBP-3 levels of children in the conversion group began to change significantly from six months after the diagnosis, with statistically significant differences when compared with the levels of children at the initial diagnosis, three months and those of the non-conversion group at the same time points (p<0.05). The levels of vitamin-D, DHEA and leptin began to change significantly at nine months after the diagnosis (p<0.05). Besides, uterine and ovarian volumes in the conversion group began to increase significantly six months after the diagnosis, with statistically significant differences when compared with those in the non-conversion group (p<0.05). Conclusion: Findings in our study suggest that regular monitoring of vitamin-D, IGF-1, IGFBP-3, DHEA and leptin levels, and uterine and ovarian volumes can predict the conversion from PT to ICPP at an early stage.

15.
ACS Appl Bio Mater ; 7(3): 1801-1809, 2024 03 18.
Article En | MEDLINE | ID: mdl-38416780

Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.


Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Biocompatible Materials , Cell Engineering , Ion Transport
16.
BMC Oral Health ; 24(1): 286, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38419015

BACKGROUND: Dento-maxillofacial deformities are common problems. Orthodontic-orthognathic surgery is the primary treatment but accurate diagnosis and careful surgical planning are essential for optimum outcomes. This study aimed to establish and verify a machine learning-based decision support system for treatment of dento-maxillofacial malformations. METHODS: Patients (n = 574) with dento-maxillofacial deformities undergoing spiral CT during January 2015 to August 2020 were enrolled to train diagnostic models based on five different machine learning algorithms; the diagnostic performances were compared with expert diagnoses. Accuracy, sensitivity, specificity, and area under the curve (AUC) were calculated. The adaptive artificial bee colony algorithm was employed to formulate the orthognathic surgical plan, and subsequently evaluated by maxillofacial surgeons in a cohort of 50 patients. The objective evaluation included the difference in bone position between the artificial intelligence (AI) generated and actual surgical plans for the patient, along with discrepancies in postoperative cephalometric analysis outcomes. RESULTS: The binary relevance extreme gradient boosting model performed best, with diagnostic success rates > 90% for six different kinds of dento-maxillofacial deformities; the exception was maxillary overdevelopment (89.27%). AUC was > 0.88 for all diagnostic types. Median score for the surgical plans was 9, and was improved after human-computer interaction. There was no statistically significant difference between the actual and AI- groups. CONCLUSIONS: Machine learning algorithms are effective for diagnosis and surgical planning of dento-maxillofacial deformities and help improve diagnostic efficiency, especially in lower medical centers.


Maxillofacial Abnormalities , Orthognathic Surgery , Orthognathic Surgical Procedures , Humans , Artificial Intelligence , Machine Learning , Maxillofacial Abnormalities/surgery , Algorithms
17.
J Hypertens ; 42(5): 816-827, 2024 May 01.
Article En | MEDLINE | ID: mdl-38165021

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease and currently there is no pharmacological therapy. Sympathetic nerve overactivity plays an important role in the development of TAAD. Sympathetic innervation is mainly controlled by nerve growth factor (NGF, a key neural chemoattractant) and semaphoring 3A (Sema3A, a key neural chemorepellent), while the roles of these two factors in aortic sympathetic innervation and especially TAAD are unknown. We hypothesized that genetically manipulating the NGF/Sema3A ratio by the Ngf -driven Sema3a expression approach may reduce aortic sympathetic nerve innervation and mitigate TAAD progression. A mouse strain of Ngf gene-driven Sema3a expression (namely NgfSema3a/Sema3a mouse) was established by inserting the 2A-Sema3A expression frame to the Ngf terminating codon using CRISPR/Cas9 technology. TAAD was induced by ß-aminopropionitrile monofumarate (BAPN) both in NgfSema3a/Sema3a mice and wild type (WT) littermates. Contrary to our expectation, the BAPN-induced TAAD was severer in NgfSema3a/Sema3a mice than in wild-type (WT) mice. In addition, NgfSema3a/Sema3a mice showed higher aortic sympathetic innervation, inflammation and extracellular matrix degradation than the WT mice after BAPN treatment. The aortic vascular smooth muscle cells isolated from NgfSema3a/Sema3a mice and pretreated with BAPN in vivo for two weeks showed stronger capabilities of proliferation and migration than that from the WT mice. We conclude that the strategy of Ngf -driven Sema3a expression cannot suppress but worsens the BAPN-induced TAAD. By investigating the aortic phenotype of NgfSema3a/Sema3a mouse strain, we unexpectedly find a path to exacerbate BAPN-induced TAAD which might be useful in future TAAD studies.


Aortic Aneurysm, Thoracic , Aortic Dissection , Azides , Deoxyglucose , Animals , Mice , Aminopropionitrile/adverse effects , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/chemically induced , Aortic Aneurysm, Thoracic/metabolism , Deoxyglucose/analogs & derivatives , Disease Models, Animal , Nerve Growth Factor/genetics , Nerve Growth Factor/adverse effects , Semaphorin-3A/genetics
18.
Cell Res ; 34(2): 140-150, 2024 02.
Article En | MEDLINE | ID: mdl-38182887

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Receptors, LDL , Animals , Humans , Mice , Endocytosis , Glycoproteins/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Hemorrhagic Fever, Crimean/prevention & control , Receptors, LDL/metabolism , Virus Internalization
19.
J Neural Transm (Vienna) ; 131(4): 323-334, 2024 04.
Article En | MEDLINE | ID: mdl-38253927

To investigate the association between autonomic dysfunction (AutD) and motor as well as non-motor symptoms (NMS) in patients with Parkinson's disease (PD). Fifty-three PD patients were divided into two groups based on the number of domains affected by AutD: a multi-domain AutD group (AutD-M) and a single-domain AutD group (AutD-S), as evaluated using the Scale for Outcomes in Parkinson's disease-Autonomic (SCOPA-AUT), which assesses autonomic symptoms, one of the NMS. A comprehensive comparison was conducted between the two groups, including clinical measures such as clinical scales, quantitative evaluations of motor function and exercise capacity. Spearman correlation analysis was employed to investigate the relationship between AutD severity and PD symptoms. Additionally, we performed multiple linear regression model analysis to determine whether associations between SCOPA-AUT scores and clinical assessments remained significant after adjusting for Hoehn and Yahr stage, sex, and age. PD patients in the AutD-M group exhibited significantly more severe NMS and motor symptoms compared to those in the AutD-S group. In correlation analysis, SCOPA-AUT scores showed significant correlations with multiple clinical symptoms, such as most of the NMS, 10-MWT and CPET parameters. Furthermore, regression analysis also revealed that more pronounced fatigue, anxiety, depressive symptoms, worse walking speed and impaired exercise capacity were associated with higher SCOPA-AUT scores. The presence of AutD is correlated with emotional disturbances, decreased exercise endurance, and impaired gait function in patients with PD. Early management of AutD may prove beneficial in alleviating some NMS and motor symptoms in PD.


Autonomic Nervous System Diseases , Parkinson Disease , Humans , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System , Severity of Illness Index
20.
J Hazard Mater ; 465: 133199, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38103296

Long term exposure to silica particles leads to various diseases, among which silicosis is of great concern. Silicosis is an interstitial lung disease caused by inhalation of silica particles in production environments. However, the mechanisms underlying silicosis remains unclear. Our previous studies revealed that progranulin (Pgrn) promoted the expression of pro-inflammatory factors in alveolar macrophages treated with silica particles and the secretion of extracellular matrix of pulmonary fibroblasts. Nevertheless, the role of Pgrn in silica particles-induced silicosis in vivo was unknown. This study found that silica particles increased Pgrn expression in silicosis patients. Pgrn deficiency reduced lung inflammation and fibrosis in silica particles-induced silicosis mouse models. Subsequently, based on transcriptional sequencing and interleukin (Il) -6 knockout mouse models, results demonstrated that Pgrn deficiency might decrease silicosis inflammation by reducing the production of Il-6, thereby modulating pulmonary fibrosis in the early stage of silicosis mouse models. Furthermore, another mechanism through which Pgrn deficiency reduced fibrosis in silicosis mouse models was the regulation of the transforming growth factor (Tgf) -ß1/Smad signaling pathway. Conclusively, Pgrn contributed to silicosis inflammation and fibrosis induced by silica particles, indicating that Pgrn could be a promising therapeutic target.


Pneumonia , Silicosis , Animals , Humans , Mice , Fibrosis , Inflammation , Interleukin-6 , Progranulins/therapeutic use , Silicon Dioxide , Silicosis/drug therapy , Silicosis/etiology , Silicosis/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/therapeutic use
...