Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neurosci ; 18: 1352129, 2024.
Article in English | MEDLINE | ID: mdl-39221008

ABSTRACT

Background: Mild cognitive impairment is a heterogeneous syndrome. The heterogeneity of the syndrome and the absence of consensus limited the advancement of MCI. The purpose of our research is to create a visual framework of the last decade, highlight the hotspots of current research, and forecast the most fruitful avenues for future MCI research. Methods: We collected all the MCI-related literature published between 1 January 2013, and 24 April 2023, on the "Web of Science." The visual graph was created by the CiteSpace and VOSviewer. The current research hotspots and future research directions are summarized through the analysis of keywords and co-cited literature. Results: There are 6,075 articles were included in the final analysis. The number of publications shows an upward trend, especially after 2018. The United States and the University of California System are the most prolific countries and institutions, respectively. Petersen is the author who ranks first in terms of publication volume and influence. Journal of Alzheimer's Disease was the most productive journal. "neuroimaging," "fluid markers," and "predictors" are the focus of current research, and "machine learning," "electroencephalogram," "deep learning," and "blood biomarkers" are potential research directions in the future. Conclusion: The cognition of MCI has been continuously evolved and renewed by multiple countries' joint efforts in the past decade. Hotspots for current research are on diagnostic biomarkers, such as fluid markers, neuroimaging, and so on. Future hotspots might be focused on the best prognostic and diagnostic models generated by machine learning and large-scale screening tools such as EEG and blood biomarkers.

2.
Front Neurol ; 15: 1393888, 2024.
Article in English | MEDLINE | ID: mdl-39006236

ABSTRACT

Objective: Existing literature has not clearly elucidated whether SARS-CoV-2 infection increases the incidence of Parkinson's disease or if Parkinson's disease patients are more susceptible to the effects of SARS-CoV-2 infection. To clarify the issue, this study employs a genetic epidemiological approach to investigate the association. Methods: This study utilizes a two-sample Mendelian randomization analysis. The primary analysis employs the inverse variance-weighted (IVW) method, supplemented by secondary analyses including MR-Egger regression, weighted median, IVW radial method, and weighted mode, to evaluate the bidirectional causal relationship between Parkinson's disease and SARS-CoV-2 infection. Results: IVW results showed no genetic causality between SARS-CoV-2 susceptibility, hospitalization rate and severity and Parkinson's disease. (IVW method: p = 0.408 OR = 1.10 95% CI: 0.87 ~ 1.39; p = 0.744 OR = 1.11 95% CI: 0.94 ~ 1.09; p = 0.436 OR = 1.05 95% CI: 0.93 ~ 1.17). Parkinson's disease was not genetically associated with susceptibility to new crown infections, hospitalization rates, and severity (IVW method: p = 0.173 OR = 1.01 95% CI: 0.99 ~ 1.03; p = 0.109 OR = 1.05 95% CI: 0.99 ~ 1.12; p = 0.209 OR = 1.03 95% CI: 0.99 ~ 1.07). MR-Egger regression, weighted median, IVW radial method, and weighted mode results are consistent with the results of the IVW method. Conclusion: This study does not support a genetic link between Parkinson's disease and SARS-CoV-2 infection, and the association observed in previous cohort studies and observational studies may be due to other confounding factors.

SELECTION OF CITATIONS
SEARCH DETAIL