Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Chem Commun (Camb) ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993023

ABSTRACT

Metal-free, photoredox-catalyzed aromatization-driven deconstructive functionalization of spiro-dihydroquinazolinones with α-CF3 alkenes is presented. The readily available spiro-dihydroquinazolinones reacted efficiently with α-CF3 alkenes during photocatalysis to give the gem-difluoroallylated and the CF3-containing quinazolin-4(3H)-ones in good yields with excellent chemoselectivity. The selectivity depends on the electron effect of substituents in α-CF3 alkenes. A wide range of four-, five-, six-, seven-, eight- and twelve-membered spiro-dihydroquinazolinones were compatible with this transformation. The protocol is also characterized by the mild and redox-neutral reaction conditions, good functional group compatibility and excellent atom economy. Mechanistic studies revealed that the reaction proceeds via a radical pathway.

2.
Org Lett ; 26(28): 6030-6034, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38976347

ABSTRACT

A photoredox-catalyzed sequential decarboxylative/defluorinative aminoalkylation of CF3-alkenes with N-arylglycines is described. This metal-free and redox-neutral protocol provided efficient access to the monofluoroalkenyl-1,5-diamines in good yields with excellent functional group compatibility. Mechanistic studies revealed that the reaction proceeds via a radical pathway with the gem-difluoroalkenyl amine as an intermediate.

3.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000597

ABSTRACT

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Infertility, Male , Spermatogenesis , Animals , Male , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/deficiency , Spermatogenesis/genetics , Mitochondria/metabolism , Mitochondria/genetics , Testis/metabolism , Meiosis/genetics , Spermatogonia/metabolism , Gene Expression Profiling , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Spermatocytes/metabolism , Transcriptome
4.
J Am Chem Soc ; 146(27): 18706-18713, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941192

ABSTRACT

The reaction between 1,2,4,5-tetrazines and alkenes in polar solvents proceeds through a Diels-Alder cycloaddition along the C-C axis (C3/C6 cycloaddition) of the tetrazine, followed by dinitrogen loss. By contrast, the reactions of 1,2,4,5-tetrazines with enamines in hexafluoroisopropanol (HFIP) give 1,2,4-triazine products stemming from a formal Diels-Alder addition across the N-N axis (N1/N4 cycloaddition). We explored the mechanism of this interesting solvent effect through DFT calculations in detail and revealed a novel reaction pathway characterized by C-N bond formation, deprotonation, and a 3,3-sigmatropic rearrangement. The participation of an HFIP molecule was found to be crucial to the N1/N4 selectivity over C3/C6 due to the more favored initial C-N bond formation than C-C bond formation.

5.
Front Med (Lausanne) ; 11: 1362153, 2024.
Article in English | MEDLINE | ID: mdl-38828234

ABSTRACT

Background: In elderly individuals suffering from hip fractures, a prolonged hospital length of stay (PLOS) not only heightens the probability of patient complications but also amplifies mortality risks. Yet, most elderly hip fracture patients present compromised baseline health conditions. Additionally, PLOS leads to increased expenses for patient treatment and care, while also diminishing hospital turnover rates. This, in turn, jeopardizes the prompt allocation of beds for urgent cases. Methods: A retrospective study was carried out from October 2021 to November 2023 on 360 elderly hip fracture patients who underwent surgical treatment at West China Hospital. The 75th percentile of the total patient cohort's hospital stay duration, which was 12 days, was used to define prolonged hospital length of stay (PLOS). The cohort was divided into training and testing datasets with a 70:30 split. A predictive model was developed using the random forest algorithm, and its performance was validated and compared with the Lasso regression model. Results: Out of 360 patients, 103 (28.61%) experienced PLOS. A Random Forest classification model was developed using the training dataset, identifying 10 essential variables. The Random Forest model achieved perfect performance in the training set, with an area under the curve (AUC), balanced accuracy, Kappa value, and F1 score of 1.000. In the testing set, the model's performance was assessed with an AUC of 0.846, balanced accuracy of 0.7294, Kappa value of 0.4325, and F1 score of 0.6061. Conclusion: This study aims to develop a prognostic model for predicting delayed discharge in elderly patients with hip fractures, thereby improving the accuracy of predicting PLOS in this population. By utilizing machine learning models, clinicians can optimize the allocation of medical resources and devise effective rehabilitation strategies for geriatric hip fracture patients. Additionally, this method can potentially improve hospital bed turnover rates, providing latent benefits for the healthcare system.

6.
Chem Sci ; 15(23): 8993-8999, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873081

ABSTRACT

Aromatization-driven deconstruction and functionalization of spiro dihydroquinazolinones via dual photoredox/nickel catalysis is developed. The aromatization effect was introduced to synergistically drive unstrained cyclic C-C bond cleavage, with the aim of overcoming the ring-size limitation of nitrogen-centered radical induced deconstruction of carbocycles. Herein, we demonstrate the synergistic photoredox/nickel catalyzed deconstructive cross-coupling of spiro dihydroquinazolinones with organic halides. Remarkably, structurally diverse organic halides including aryl, alkenyl, alkynyl, and alkyl bromides were compatible for the coupling. In addition, this protocol is also characterized by its mild and redox-neutral conditions, excellent functional group compatibility, high atom economy, and easy scalability. A telescoped procedure involving condensation and ring-opening/coupling was found to be accessible. This work provides a complementary strategy to the existing radical-mediated C-C bond cleavage of unstrained carbocycles.

7.
Acta Physiol (Oxf) ; 240(8): e14189, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860527

ABSTRACT

Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.


Subject(s)
Calcineurin Inhibitors , Calcineurin , Hyperkalemia , Potassium , Hyperkalemia/metabolism , Animals , Humans , Calcineurin/metabolism , Potassium/metabolism , Calcineurin Inhibitors/adverse effects , Calcineurin Inhibitors/pharmacology , Kidney/metabolism , Kidney/drug effects
9.
Medicine (Baltimore) ; 103(25): e38613, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905360

ABSTRACT

RATIONALE: Scrub typhus is a naturally occurring acute febrile disease caused by Orientia tsutsugamushi. Although it can cause multiple organ dysfunction, central nervous system infections are uncommon. PATIENT CONCERNS: A 17-year-old male presented with a 5-day history of fever and headaches. The MRI of the head revealed thickness and enhancement of the left temporal lobe and tentorium cerebelli, indicating potential inflammation. DIAGNOSES: The patient was diagnosed with a central nervous system infection. INTERVENTIONS: Ceftriaxone and acyclovir were administered intravenously to treat the infection, reduce fever, restore acid-base balance, and manage electrolyte disorders. OUTCOMES: Despite receiving ceftriaxone and acyclovir as infection therapy, there was no improvement. Additional multipathogen metagenomic testing indicated the presence of O tsutsugamushi infection, and an eschar was identified in the left axilla. The diagnosis was changed to scrub typhus with meningitis and the therapy was modified to intravenous doxycycline. Following a 2-day therapy, the body temperature normalized, and the fever subsided. CONCLUSIONS: The patient was diagnosed with scrub typhus accompanied by meningitis, and doxycycline treatment was effective. LESSION: Rarely reported cases of scrub typhus with meningitis and the lack of identifiable symptoms increase the chance of misdiagnosis or oversight. Patients with central nervous system infections presenting with fever and headache unresponsive to conventional antibacterial and antiviral treatment should be considered for scrub typhus with meningitis. Prompt multipathogen metagenomic testing is recommended to confirm the diagnosis and modify the treatment accordingly.


Subject(s)
Anti-Bacterial Agents , Scrub Typhus , Humans , Scrub Typhus/diagnosis , Scrub Typhus/drug therapy , Scrub Typhus/complications , Male , Adolescent , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Doxycycline/therapeutic use , Doxycycline/administration & dosage , Orientia tsutsugamushi/isolation & purification , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/microbiology
10.
Org Lett ; 26(26): 5482-5487, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38913035

ABSTRACT

An efficient synthesis of quinoxaline-fused aza-bicyclo[2.1.1]hexanes bearing multiple quaternary carbon centers via the intermolecular [2π+2σ] cycloaddition of bicyclo[1.1.0]butanes and quinoxalin-2(1H)-ones, facilitated by Lewis acid catalysis, is presented. This reaction is carried out under mild conditions and exhibits a broad substrate scope and excellent functional group tolerance.

12.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733989

ABSTRACT

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Subject(s)
Cerebellum , Neurons , Retina , Animals , Female , Male , Mice , Cerebellum/metabolism , Cerebellum/blood supply , Cerebellum/cytology , Ion Channels/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Retina/cytology , Retina/metabolism , Retinal Ganglion Cells/metabolism , Retinal Vessels/metabolism
13.
Front Oncol ; 14: 1376502, 2024.
Article in English | MEDLINE | ID: mdl-38628672

ABSTRACT

Purpose: Dysregulated expression of microRNA (miRNAs) in lung cancer has been wildly reported. The clinicopathologic significance of miR-9-5p in non-small-cell lung cancer (NSCLC) patients and its effect on NSCLC progression were explored in this study. Patients and methods: A total of 76 NSCLC patients were included. miR-9-5p expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Then, in vitro experiments including cell growth curve assays, colony formation assays, and transwell migration assays were performed. Further clinicopathological and prognostic values were explored using bioinformatics analysis of the TCGA database. Results: miR-9-5p expression was significantly increased in tumor tissues (both P < 0.0001). miR-9-5p expression was relatively higher in larger tumors (P = 0.0327) and in lung squamous carcinoma (LUSC) (P = 0. 0143). In addition, miR-9-5p was significantly upregulated in the normal lung tissues of cigarette smokers (P = 0.0099). In vitro, miR-9-5p was correlated with cell proliferation and migration. After that, bioinformatics analysis of the TCGA database indicated that miR-9-5p was correlated with tumor size (P = 0.0022), lymphatic metastasis (P = 0.0141), LUSC (P < 0.0001), and smoking history (P < 0.0001). Finally, a prognostic study indicated high miR-9-5p expression was correlated with poor prognosis in LUAD (P = 0.0121). Conclusion: Upregulation of miR-9-5p may have an oncogenic effect in NSCLC and may be related to smoking. The conclusion of this study may help find new prognostic and therapeutic targets for NSCLC and the exploration of the relationship between smoking and lung cancer.

14.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617277

ABSTRACT

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

15.
Int J Biol Macromol ; 268(Pt 2): 131623, 2024 May.
Article in English | MEDLINE | ID: mdl-38642687

ABSTRACT

When skin is damaged or affected by diseases, it often undergoes irreversible scar formation, leading to aesthetic concerns and psychological distress for patients. In cases of extensive skin defects, the patient's life can be severely compromised. In recent years, 3D printing technology has emerged as a groundbreaking approach to skin tissue engineering, offering promising solutions to various skin-related conditions. 3D bioprinting technology enables the precise fabrication of structures by programming the spatial arrangement of cells within the skin tissue and subsequently printing skin replacements either in a 3D bioprinter or directly at the site of the defect. This study provides a comprehensive overview of various biopolymer-based inks, with a particular emphasis on chitosan (CS), starch, alginate, agarose, cellulose, and fibronectin, all of which are natural polymers belonging to the category of biomacromolecules. Additionally, it summarizes artificially synthesized polymers capable of enhancing the performance of these biomacromolecule-based bioinks, thereby composing hybrid biopolymer inks aimed at better application in skin tissue engineering endeavors. This review paper examines the recent advancements, characteristics, benefits, and limitations of biological 3D bioprinting techniques for skin tissue engineering. By utilizing bioinks containing seed cells, hydrogels with bioactive factors, and biomaterials, complex structures resembling natural skin can be accurately fabricated in a layer-by-layer manner. The importance of biological scaffolds in promoting skin wound healing and the role of 3D bioprinting in skin tissue regeneration processes is discussed. Additionally, this paper addresses the challenges and constraints associated with current 3D bioprinting technologies for skin tissue and presents future perspectives. These include advancements in bioink formulations, full-thickness skin bioprinting, vascularization strategies, and skin appendages bioprinting.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Skin , Tissue Engineering , Humans , Bioprinting/methods , Tissue Engineering/methods , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Animals , Biopolymers/chemistry , Wound Healing/drug effects , Chitosan/chemistry
16.
Chem Commun (Camb) ; 60(40): 5334-5337, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38668748

ABSTRACT

A photoredox-catalyzed alkylarylation of activated alkenes via a radical C-C bond cleavage/Truce-Smiles rearrangement cascade is developed. The protocol features mild and redox-neutral conditions, broad substrate scope and excellent functional group compatibility, providing a facile and efficient approach to the long-chain distal keto-amides with all-carbon quaternary centers at the alpha position.

17.
Org Lett ; 26(11): 2266-2270, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38451860

ABSTRACT

A sustainable, cyanide-free synthesis of alkyl nitriles via the aerobic oxidative deconstruction of unstrained cycloalkanones with ammonium salts has been developed. Using inexpensive and stable ammonium salts as the nitrogen source, a variety of alkyl nitriles containing a distal carbonyl group were obtained in good yields under visible-light-promoted iron catalysis. This protocol is characterized by mild conditions, abundant and environmentally benign materials, and high atom and step economy with minimal waste generation. The primary mechanism study revealed that 1O2 is likely to be involved in this reaction.

18.
Org Lett ; 26(13): 2656-2661, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38526445

ABSTRACT

We disclose a photocatalytic strategy that simultaneously addresses the construction of trifluoromethylated quaternary carbon centers and the preparation of ß-CF3-enones through radical difunctionalization of α-CF3 alkenes with acyl chlorides. This method is characterized by its broad functional group compatibility, high efficiency, and atom economy. The versatility of this transformation is poised to broaden the applications of α-CF3 alkenes, providing new pathways for the rapid assembly of structurally diverse fluorinated compounds.

19.
Sci Rep ; 14(1): 7463, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553530

ABSTRACT

Analyzing the influence of tourism on carbon emission has significant implications for promoting the sustainable development of tourism. Based on the panel data of 31 tourist cities in China from 2005 to 2022, this study utilizes a structural equation model to explore the carbon reduction effect of tourism development and its influencing mechanism. The results show that: (1) The overall carbon emission efficiency of tourism cities first decreased and then increased, rised to a peak of 0.923 in 2022. (2) Tourism development has a significant positive impact on carbon emission efficiency, and there are three influence paths: tourism → environmental regulation → carbon emission efficiency, tourism → environmental regulation → industrial structure → carbon emission efficiency, and tourism → industrial structure → carbon emission efficiency. (3) The influence of tourism development on carbon emission efficiency mainly depends on the direct effect, and the development of tourism also indirectly affect the industrial structure. Environmental regulation also mainly depends on the direct effect on carbon emission efficiency. (4) Foreign direct investment lead to the reduction of carbon emission efficiency in both direct and indirect aspects.

20.
Sheng Li Xue Bao ; 76(1): 52-58, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38444131

ABSTRACT

The depolarization-activated current of intercalated cells in the distal nephron was detected for the first time, and the type of ion channel mediating the current was identified based on electrophysiological and pharmacological properties. The whole-cell current of distal nephron in kidney of C57BL/6J mice was recorded by Axon MultiClamp 700B patch-clamp system, and the effects of several K+ channel inhibitors on the depolarization-activated current in intercalated cells were observed. In addition, the immunofluorescence technique was used to investigate the localization of the channel in intercalated cells. The results showed that when K+ concentration of the bath solution was equal to intracellular fluid (140 mmol/L K+), the depolarization-activated current could be recorded in intercalated cells, but this current was not observed in the principal cells. The depolarization-activated current detected in the intercalated cells could be blocked by Kv4.1 inhibitors. The immunofluorescence experiment showed that the fluorescence of Kv4.1 protein was only present in intercalated cells and not observed in principal cells. Kv4.1 protein immunofluorescence was observed in the luminal and basolateral membrane of intercalated cells, but the fluorescence intensity of luminal membrane was higher than that of basolateral membrane. We conclude that the depolarization-activated current detected in intercalated cells is mediated by Kv4.1 and this channel is mainly expressed in the luminal membrane of intercalated cells.


Subject(s)
Epithelial Cells , Kidney , Mice , Animals , Mice, Inbred C57BL , Cell Membrane
SELECTION OF CITATIONS
SEARCH DETAIL