Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 34(6)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36356307

ABSTRACT

Kinetic modeling of the formation of axial III-V nanowire heterostructures grown by the Au-catalyzed vapor-liquid-solid method is presented. The method is based on a combination of kinetic growth theory for different binaries at the liquid-solid interface and thermodynamics of ternary liquid and solid alloys. Non-stationary treatment of the compositional change obtained by swapping material fluxes allows us to compute the interfacial abruptness across nanowire heterostructures and leads to the following results. At high enough supersaturation in liquid, there is no segregation of dissimilar binaries in solid even for materials with strong interactions between III and V pairs, such as InGaAs. This leads to the suppression of the miscibility gaps by kinetic factors. Increasing the Au concentration widens the heterointerface at low Au content and narrows it at high Au content in a catalyst droplet. The model fits quite well the data on the compositional profiles across nanowire heterostructures based on both group III and group V interchange. Very sharp heterointerfaces in double of InAs/InP/InAs nanowire heterostructures is explained by a reduced reservoir effect due to low solubility of group V elements in liquid.

2.
Nanotechnology ; 32(49)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34433149

ABSTRACT

Wurtzite GaP nanowires are interesting for the direct bandgap engineering and can be used as templates for further growth of hexagonal Si shells. Most wurtzite GaP nanowires have previously been obtained with Au catalysts. Here, we show that long (∼500 nm) wurtzite sections are formed in the top parts of self-catalyzed GaP nanowires grown by molecular beam epitaxy on Si(111) substrates in the droplet consumption stage, which is achieved by abruptly increasing the atomic V/III flux ratio from 2 to 3. We investigate the temperature dependence of the length of wurtzite sections and show that the longest sections are obtained at 610 °C. A supporting model explains the observed trends using a phase diagram of GaP nanowires, where the wurtzite phase is formed within a certain range of the droplet contact angles. The optimal growth temperature for growing wurtzite nanowires corresponds to the largest diffusion length of Ga adatoms, which helps to maintain the required contact angle for the longest time.

3.
Nanotechnology ; 32(26)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33730697

ABSTRACT

GaAs nanowire (NW) arrays were grown by molecular beam epitaxy using the self-assisted vapor-liquid-solid method with Ga droplets as seed particles. A Ga pre-deposition step is examined to control NW yield and diameter. The NW yield can be increased with suitable duration of a Ga pre-deposition step but is highly dependent on oxide hole diameter and surface conditions. The NW diameter was determined by vapor-solid growth on the NW sidewalls, rather than Ga pre-deposition. The maximum NW yield with a Ga pre-deposition step was very close to 100%, established at shorter Ga deposition durations and for larger holes. This trend was explained within a model where maximum yield is obtained when the Ga droplet volume approximately equals the hole volume.

4.
Nanotechnology ; 31(48): 485602, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-32931461

ABSTRACT

The droplet contact angle and morphology of the growth interface (vertical, tapered or truncated facets) are known to affect the zincblende (ZB) or wurtzite (WZ) crystal phase of III-V nanowires (NWs) grown by the vapor-liquid-solid method. Here, we present a model which describes the dynamics of the morphological evolution in self-catalyzed III-V NWs in terms of the time-dependent (or length-dependent) contact angle or top nanowire radius under varying material fluxes. The model fits quite well the contact angle dynamics obtained by in situ growth monitoring of self-catalyzed GaAs NWs in a transmission electron microscope. These results can be used for modeling the interface dynamics and the related crystal phase switching and for obtaining ZB-WZ heterostructures in III-V.

5.
Nanotechnology ; 30(47): 475604, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31416057

ABSTRACT

State-of-the art models for statistical properties within the nanowire ensembles consider influx of precursors, reflection and surface diffusion of adatoms. These models predict a delay in the nanowire growth start and the evolution toward an asymmetric length distribution. We demonstrate here the effect of desorption of the nanowire material, which has not been considered so far in studies of the nanowire length distributions. We show that at the very beginning of growth the length distribution should be asymmetric due to the slow nucleation of nanowires. At longer times, the length distribution acquires a symmetric Gaussian shape due to the increased weight of desorption. The width of this distribution is larger than Poissonian and increases for higher ratio of desorption over deposition rate. Our model is consistent with the length evolution of organized self-catalyzed GaAs nanowires. We outline that desorption of the nanowire material should be minimized to achieve arrays of highly identical nanowires. These results are relevant for a wide variety of material systems.

6.
Nano Lett ; 19(6): 3892-3897, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31117757

ABSTRACT

The band offsets occurring at the abrupt heterointerfaces of suitable material combinations offer a powerful design tool for high performance or even new kinds of devices. Because of a large variety of applications for metal-semiconductor heterostructures and the promise of low-dimensional systems to present exceptional device characteristics, nanowire heterostructures gained particular interest over the past decade. However, compared to those achieved by mature two-dimensional processing techniques, quasi one-dimensional (1D) heterostructures often suffer from low interface and crystalline quality. For the GaAs-Au system, we demonstrate exemplarily a new approach to generate epitaxial and single crystalline metal-semiconductor nanowire heterostructures with atomically sharp interfaces using standard semiconductor processing techniques. Spatially resolved Raman measurements exclude any significant strain at the lattice mismatched metal-semiconductor heterojunction. On the basis of experimental results and simulation work, a novel self-assembled mechanism is demonstrated which yields one-step reconfiguration of a semiconductor-metal core-shell nanowire to a quasi 1D axially stacked heterostructure via flash lamp annealing. Transmission electron microscopy imaging and electrical characterization confirm the high interface quality resulting in the lowest Schottky barrier for the GaAs-Au system reported to date. Without limiting the generality, this novel approach will open up new opportunities in the syntheses of other metal-semiconductor nanowire heterostructures and thus facilitate the research of high-quality interfaces in metal-semiconductor nanocontacts.

7.
Nanotechnology ; 30(28): 285601, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-30913550

ABSTRACT

An analytical growth model is presented to explain the influence of antimony fractional flux on the morphology evolution of catalyst-free InAs1-x Sb x semiconductor nanowires grown by the selective-area vapor-solid mechanism on a Si (111) substrate by molecular beam epitaxy. Increasing Sb fractional flux promoted radial growth and suppressed axial growth, resulting in 'nano-disks'. This behavior is explained by a model of indium adatom diffusion along nanowire facets.

8.
Nat Commun ; 10(1): 869, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787305

ABSTRACT

III-V semiconductor nanowires deterministically placed on top of silicon electronic platform would open many avenues in silicon-based photonics, quantum technologies and energy harvesting. For this to become a reality, gold-free site-selected growth is necessary. Here, we propose a mechanism which gives a clear route for maximizing the nanowire yield in the self-catalyzed growth fashion. It is widely accepted that growth of nanowires occurs on a layer-by-layer basis, starting at the triple-phase line. Contrary to common understanding, we find that vertical growth of nanowires starts at the oxide-substrate line interface, forming a ring-like structure several layers thick. This is granted by optimizing the diameter/height aspect ratio and cylindrical symmetry of holes, which impacts the diffusion flux of the group V element through the well-positioned group III droplet. This work provides clear grounds for realistic integration of III-Vs on silicon and for the organized growth of nanowires in other material systems.

9.
Nanotechnology ; 29(22): 225603, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29509146

ABSTRACT

Patterned arrays of self-assisted GaP nanowires (NWs) were grown on a Si substrate by gas source molecular beam epitaxy using various V/III flux ratios from 1-6, and various pitches from 360-1000 nm. As the V/III flux ratio was increased from 1-6, the NWs showed a change in morphology from outward tapering to straight, and eventually to inward tapering. The morphologies of the self-assisted GaP NWs are well described by a simple kinetic equation for the NW radius versus the position along the NW axis. The most important growth parameter that governs the NW morphology is the V/III flux ratio. Sharpened NWs with a stable radius equal to only 12 nm at a V/III flux of 6 were achieved, demonstrating their suitability for the insertion of quantum dots.

10.
Nano Lett ; 17(10): 5875-5882, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28903563

ABSTRACT

A new dopant incorporation mechanism in Ga-assisted GaAs nanowires grown by molecular beam epitaxy is reported. Off-axis electron holography revealed that p-type Be dopants introduced in situ during molecular beam epitaxy growth of the nanowires were distributed inhomogeneously in the nanowire cross-section, perpendicular to the growth direction. The active dopants showed a remarkable azimuthal distribution along the (111)B flat top of the nanowires, which is attributed to preferred incorporation along 3-fold symmetric truncated facets under the Ga droplet. A diffusion model is presented to explain the unique radial and azimuthal variation of the active dopants in the GaAs nanowires.

11.
Phys Rev E ; 95(1-1): 012135, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208403

ABSTRACT

We obtain an exact solution for the cluster-size distributions in a closed system described by nonlinear rate equations for irreversible homogeneous growth with size-linear agglomeration rates of the form K_{s}=D(a+s-1) for all s≥1, where D is the diffusion coefficient, s is the size, and a is a positive constant. The size spectrum is given by the Pólya distribution times a factor that normalizes the first moment of the distribution to unity and zeroes out the monomer concentration at t→∞. We show that the a value sets a maximum mean size that equals e for large a and tends to infinity only when a→0. The size distributions are monotonically decreasing in the initial stage, converting to different monomodal shapes with a maximum at s=2 in the course of growth. The variance of the distribution is narrower than Poissonian at large a and broader than Poissonian at small a, with the threshold occurring at a≅1. In most cases, the sizes present in the distributions are small and hence can hardly be described by continuum equations.

12.
Nanotechnology ; 27(37): 375602, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27501469

ABSTRACT

We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

14.
Nanotechnology ; 26(46): 465301, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26508403

ABSTRACT

Experimental data and a model are presented which define the boundary values of V/III flux ratio and growth temperature for droplet-assisted nucleation of InAs semiconductor nanowires in selective-area epitaxy on SiO(x)/Si (111) substrates by molecular beam epitaxy. Within these boundaries, the substrate receives a balanced flux of group III and V materials allowing the growth of vertically oriented nanowires as compared to the formation of droplets or crystallites.

15.
Nanoscale ; 7(39): 16266-72, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26376711

ABSTRACT

InGaAs nanowires offer great promise in fundamental studies of ternary compound semiconductors with variable composition and opens up a wide range of applications due to their bandgap tunability and high carrier mobility. Here, we report a study on the growth of Au-seeded InGaAs nanowires by metal-organic vapour phase epitaxy and present a model to explain the mechanisms that govern the growth and composition evolution in ternary III-V nanowires. The model allows us to further understand the limitations on the growth rate and incorporation of the two group III species imposed by the deposition conditions and some intrinsic properties of the material transport and nucleation. Within the model, the evolution of InGaAs nanowire growth rate and composition with particle size, temperature and V/III ratio is described and correlates very well with experimental findings. The understanding gained in this study should be useful for the controlled fabrication of tunable ternary nanowires for various applications.

16.
Nanotechnology ; 26(41): 415604, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26404459

ABSTRACT

We investigate a growth mechanism which allows for the fabrication of catalyst-free InAs nanowires on Si (111) substrates by chemical beam epitaxy. Our growth protocol consists of successive low-temperature (LT) nucleation and high-temperature growth steps. This method produces non-tapered InAs nanowires with controllable length and diameter. We show that InAs nanowires evolve from the islands formed during the LT nucleation step and grow truly catalyst-free, without any indium droplets at the tip. The impact of different growth parameters on the nanowire morphology is presented. In particular, good control over nanowire aspect ratio is demonstrated. A better understanding of the growth process is obtained through the development of a theoretical model combining the diffusion-induced growth scenario with some specific features of the catalyst-free growth mechanism, along with the analysis of the V/III flow ratio influencing material incorporation. As a result, we perform a full mapping of the nanowire morphology versus growth parameters which provides useful general guidelines on the self-induced formation of III-V nanowires on silicon.

17.
Nano Lett ; 15(8): 5580-4, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26189571

ABSTRACT

Designing strategies to reach monodispersity in fabrication of semiconductor nanowire ensembles is essential for numerous applications. When Ga-catalyzed GaAs nanowire arrays are grown by molecular beam epitaxy with help of droplet-engineering, we observe a significant narrowing of the diameter distribution of the final nanowire array with respect to the size distribution of the initial Ga droplets. Considering that the droplet serves as a nonequilibrium reservoir of a group III metal, we develop a model that demonstrates a self-equilibration effect on the droplet size in self-catalyzed III-V nanowires. This effect leads to arrays of nanowires with a high degree of uniformity regardless of the initial conditions, while the stationary diameter can be further finely tuned by varying the spacing of the array pitch on patterned Si substrates.

18.
J Chem Phys ; 142(20): 204702, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26026456

ABSTRACT

We present a refined model for the vapor-liquid-solid growth and crystal structure of Au-catalyzed III-V nanowires, which revisits several assumptions used so far and is capable of describing the transition from mononuclear to polynuclear regime and ultimately to regular atomistic growth. We construct the crystal phase diagrams and calculate the wurtzite percentages, elongation rates, critical sizes, and polynucleation thresholds of Au-catalyzed GaAs nanowires depending on the As flow. We find a non-monotonic dependence of the crystal phase on the group V flow, with the zincblende structure being preferred at low and high group V flows and the wurtzite structure forming at intermediate group V flows. This correlates with most of the available experimental data. Finally, we discuss the atomistic growth picture which yields zincblende crystal structure and should be very advantageous for fabrication of ternary III-V nanowires with well-controlled composition and heterointerfaces.

19.
Article in English | MEDLINE | ID: mdl-25974509

ABSTRACT

We obtain an explicit solution for the island-size distribution described by the rate equations for irreversible growth with the simplified capture rates of the form σ(s)(Θ)∝Θ(p)(a+s-1) for all s≥1, where s is the size and Θ is the time-dependent coverage. The intrinsic property of this solution is its scaling form in the continuum limit. The analytic scaling function depends on the two parameters a and p and is capable of describing very dissimilar distribution shapes, both monomodal and monotonically decreasing. The obtained results suggest that the scaling features of the size distributions are closely related to the size linearity of the capture rates. A simple analytic scaling is obtained rigorously here and helps to gain a better theoretical understanding of possible origins of the scaling behavior of the island-size distributions.

20.
J Chem Phys ; 142(12): 124110, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25833568

ABSTRACT

We obtain exact solutions of the rate equations for homogeneous and heterogeneous irreversible growth models with linear size dependences of the capture rates. In the limit of high ratios of diffusion constant over deposition rate, both solutions yield simple analytical scaling functions with the correct normalizations. These are given by the cumulative distribution function and the probability density function of the gamma-distribution in homogeneous and heterogeneous cases, respectively. Our size distributions depend on the value of the capture rate a in the reaction of joining two mobile monomers A1 (A1 + A1 → A2) or the monomer attachment to the reactive defect B (A1 + B → AB). In homogeneous cases, the size distribution is monotonically decreasing regardless of a. In heterogeneous growth, the distribution is monotonically decreasing when a ≤ 1 and monomodal when a > 1. The obtained solutions describe fairly well the experimental data on the length distributions of Al, Ga, In, and Mn adatom chains on Si(100)-2 × 1 surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...