ABSTRACT
Espírito Santo state, in Brazil, is a dengue-endemic region predicted to suffer from an increase in temperature and drought due to climate change, which could affect the areas with active dengue virus transmission. The study objective was modeling climatic factors and climate change effects in zones suitable for dengue virus transmission in Espírito Santo state, Brazil. Data on dengue reports from 2022 were used to determine climatic variables related to spatial distribution. The climate change projections were generated for the 2030s, 2050s, 2070s, and 2090s for three distinct Shared Socioeconomic Pathways: SSP1-2.6, SSP2-4.5 and SSP5-8.5. A maximum entropy algorithm was used to construct the three models and projections, and the results were used to calculate the ensemble mean. Isothermality, the maximum temperature of the warmest month, precipitation of the wettest month, precipitation of the warmest quarter, and annual precipitation impacted the model. Projections indicated a change in areas suitable for dengue virus transmission, varying from -30.44% in the 2070s (SSP1-2.6) to +13.07% in the 2070s (SSP5-8.5) compared to 2022. The coastal regions were consistently suitable in all scenarios. Urbanized and highly populated areas were predicted to persist with active dengue transmission in Espírito Santo state, posing challenges for public health response.
ABSTRACT
Glycosylation is the most common protein and lipid post-translational modification in humans. Congenital disorders of glycosylation (CDG) are characterized by both genetic and clinical heterogeneity, presenting multisystemic manifestations, and in most cases are autosomal recessive in inheritance. The PIGN gene is responsible for the addition of phosphoethanolamine to the first mannose in the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway, a highly conserved process that enables proteins to bind to the cell surface membrane. Here, we report a family with two siblings pediatric cases with the exact same compound heterozygous variants in PIGN. The (c.776T > C) variant of uncertain significance (VUS) together with a known pathogenic variant (c.932T > G), resulting in clinical features compatible with PIGN-related conditions, more specific the CDG. This is the first time that PIGN variant c.776T > C is reported in literature in individuals with PIGN-congenital disorder of glycosylation (PIGN-CDG), and the current submission in ClinVar by Invitae® is specifically of our case. Detailed clinical information and molecular analyses are presented. Here, we show for the first time two affected siblings with one pathogenic variant (c.932T > G) and the c.776T > C VUS in trans. In honor of the family, we propose the name Bella-Noah Syndrome for disorder.
ABSTRACT
Breast cancer is the second most frequent cancer in the world. It is a heterogeneous disease and the leading cause of cancer mortality in women. Advances in molecular technologies allowed for the identification of new and more specifics biomarkers for breast cancer diagnosis, prognosis, and risk prediction, enabling personalized treatments, improving therapy, and preventing overtreatment, undertreatment, and incorrect treatment. Several breast cancer biomarkers have been identified and, along with traditional biomarkers, they can assist physicians throughout treatment plan and increase therapy success. Despite the need of more data to improve specificity and determine the real clinical utility of some biomarkers, others are already established and can be used as a guide to make treatment decisions. In this review, we summarize the available traditional, novel, and potential biomarkers while also including gene expression profiles, breast cancer single-cell and polyploid giant cancer cells. We hope to help physicians understand tumor specific characteristics and support decision-making in patient-personalized clinical management, consequently improving treatment outcome.