Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Nat Commun ; 15(1): 5791, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987295

ABSTRACT

Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.


Subject(s)
Extracellular Matrix , Hematopoietic Stem Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Nestin , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Animals , Nestin/metabolism , Nestin/genetics , Extracellular Matrix/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Stem Cell Niche , Hydrogels/chemistry , Bioengineering/methods , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hematopoietic Stem Cell Transplantation , Antigens, CD34/metabolism , Collagen Type I/metabolism , Cell Differentiation , Mice, Inbred C57BL
2.
Sci Transl Med ; 16(751): eadi5336, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865484

ABSTRACT

In chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.


Subject(s)
Drug Repositioning , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Animals , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Piperazines/pharmacology , Piperazines/therapeutic use , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Calcium/metabolism , Oxidative Phosphorylation/drug effects , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use
3.
Nat Commun ; 15(1): 1931, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431691

ABSTRACT

Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Mechanistic Target of Rapamycin Complex 1 , AMP-Activated Protein Kinases , Purines/therapeutic use , Purine Nucleotides , Folic Acid/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
4.
Nat Commun ; 15(1): 1090, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316788

ABSTRACT

Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment. CML exposed macrophages separate from their normal counterparts by reduced expression of the surface marker CD36, which significantly reduces clearance of apoptotic cells. We uncover aberrant production of CML-secreted factors, including the immune modulatory protein lactotransferrin (LTF), that suppresses efferocytosis, phagocytosis, and CD36 surface expression in BM macrophages, indicating that the elevated secretion of LTF is, at least partially responsible for the supressed clearance function of Ph- macrophages.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Animals , Mice , Humans , Bone Marrow/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myeloid/pathology , Philadelphia Chromosome , Macrophages/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Tumor Microenvironment/genetics
5.
Orthop Nurs ; 43(1): 41-44, 2024.
Article in English | MEDLINE | ID: mdl-38266263

ABSTRACT

Priapism is a disorder where the penis without sexual stimulation maintains a prolonged rigid erection lasting 4 or more hours. There are two classifications of priapism, ischemic (low flow) or nonischemic high flow, and each have specific etiologies, diagnostic criteria, and management. This presented case study involved a 58-year-old male who experienced an ischemic priapism more than 24 hours after an anterior lumbar interbody fusion (ALIF). A flaccid penis was achieved after the patient received two 400 µg of phenylephrine HCL into the corpora cavernosum. Review of the literature suggests anesthetic medications given during the surgical procedure may have caused the priapism. Lessons that can be learned from this case study highlight that even though the nurse may not expect to see a priapism after an ALIF, the nurse must always be diligent and not become complacent with unexpected findings or assessments that may cause irreparable harm to the patient.


Subject(s)
Priapism , Male , Humans , Middle Aged , Priapism/etiology , Learning , Lumbosacral Region , Phenylephrine
6.
Nat Commun ; 15(1): 651, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246924

ABSTRACT

Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Cell Division , Embryonic Stem Cells , Neoplasm, Residual , Tumor Suppressor Protein p53/genetics
7.
Leukemia ; 37(12): 2414-2425, 2023 12.
Article in English | MEDLINE | ID: mdl-37775560

ABSTRACT

Targeted deletion of Raptor, a component of mechanistic target of rapamycin complex 1 (mTORC1), reveals an essential role for mTORC1 in initiation/maintenance of leukemia in a CLL model, resulting from a failure for haemopoietic stem/progenitor cells (HSPCs) to commit to the B cell lineage. Induction of Raptor-deficiency in NSG mice transplanted with Mx1-Raptor CLL progenitor cells (PKCα-KR-transduced HSPCs) after disease establishment revealed a reduction in CLL-like disease load and a significant increase in survival in the mice. Interestingly in an aggressive CLL-like disease model, rapamycin treatment reduced disease burden more effectively than AZD2014 (dual mTORC1/2 inhibitor), indicating a skew towards mTORC1 sensitivity with more aggressive disease. Rapamycin, but not ibrutinib, efficiently targeted the eEF2/eEF2K translation elongation regulatory axis, downstream of mTORC1, resulting in eEF2 inactivation through induction of eEF2T56 phosphorylation. mTOR inhibitor treatment of primary patient CLL cells halted proliferation, at least in part through modulation of eEF2K/eEF2 phosphorylation and expression, reduced protein synthesis and inhibited expression of MCL1, Cyclin A and Cyclin D2. Our studies highlight the importance of translation elongation as a driver of disease progression and identify inactivation of eEF2 activity as a novel therapeutic target for blocking CLL progression.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Animals , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Signal Transduction , Sirolimus , Phosphorylation , Disease Progression
8.
Nat Commun ; 14(1): 4634, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591854

ABSTRACT

Deregulated oxidative metabolism is a hallmark of leukaemia. While tyrosine kinase inhibitors (TKIs) such as imatinib have increased survival of chronic myeloid leukaemia (CML) patients, they fail to eradicate disease-initiating leukemic stem cells (LSCs). Whether TKI-treated CML LSCs remain metabolically deregulated is unknown. Using clinically and physiologically relevant assays, we generate multi-omics datasets that offer unique insight into metabolic adaptation and nutrient fate in patient-derived CML LSCs. We demonstrate that LSCs have increased pyruvate anaplerosis, mediated by increased mitochondrial pyruvate carrier 1/2 (MPC1/2) levels and pyruvate carboxylase (PC) activity, in comparison to normal counterparts. While imatinib reverses BCR::ABL1-mediated LSC metabolic reprogramming, stable isotope-assisted metabolomics reveals that deregulated pyruvate anaplerosis is not affected by imatinib. Encouragingly, genetic ablation of pyruvate anaplerosis sensitises CML cells to imatinib. Finally, we demonstrate that MSDC-0160, a clinical orally-available MPC1/2 inhibitor, inhibits pyruvate anaplerosis and targets imatinib-resistant CML LSCs in robust pre-clinical CML models. Collectively these results highlight pyruvate anaplerosis as a persistent and therapeutically targetable vulnerability in imatinib-treated CML patient-derived samples.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Pyruvic Acid , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Acclimatization , Biological Assay
9.
EMBO Rep ; 24(10): e56279, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37489735

ABSTRACT

To fuel accelerated proliferation, leukaemic cells undergo metabolic deregulation, which can result in specific nutrient dependencies. Here, we perform an amino acid drop-out screen and apply pre-clinical models of chronic phase chronic myeloid leukaemia (CML) to identify arginine as a nutrient essential for primary human CML cells. Analysis of the Microarray Innovations in Leukaemia (MILE) dataset uncovers reduced ASS1 levels in CML compared to most other leukaemia types. Stable isotope tracing reveals repressed activity of all urea cycle enzymes in patient-derived CML CD34+ cells, rendering them arginine auxotrophic. Thus, arginine deprivation completely blocks proliferation of CML CD34+ cells and induces significantly higher levels of apoptosis when compared to arginine-deprived cell lines. Similarly, primary CML cells, but not normal CD34+ samples, are particularly sensitive to treatment with the arginine-depleting enzyme, BCT-100, which induces apoptosis and reduces clonogenicity. Moreover, BCT-100 is highly efficacious in a patient-derived xenograft model, causing > 90% reduction in the number of human leukaemic stem cells (LSCs). These findings indicate arginine depletion to be a promising and novel strategy to eradicate therapy resistant LSCs.


Subject(s)
Arginine , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Arginine/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Apoptosis , Stem Cells/metabolism , Neoplastic Stem Cells/metabolism
10.
Lancet Gastroenterol Hepatol ; 8(8): 735-747, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329900

ABSTRACT

BACKGROUND: Coeliac disease management is limited to strict adherence to a gluten-free diet with no approved therapies. This first-in-human phase 1 study evaluated the safety and tolerability of KAN-101, a liver-targeting glycosylation signature conjugated to a deaminated gliadin peptide designed to induce immune tolerance to gliadin. METHODS: Adults (aged 18-70 years) with biopsy-confirmed, HLA-DQ2.5 genotype coeliac disease were enrolled from clinical research units and hospitals in the USA. Part A of the trial was an open-label, single ascending dose study of intravenous KAN-101 using sentinel dosing in evaluation of the following cohorts: 0·15 mg/kg, 0·3 mg/kg, 0·6 mg/kg, 1·2 mg/kg, and 1·5 mg/kg. Following safety monitoring committee review of the 0·3 mg/kg dose level in part A, part B was initiated as a randomised, placebo-controlled, multiple ascending dose study. In part B, interactive response technology was used to randomly assign (5:1) patients to receive intravenous KAN-101 (0·15 mg/kg, 0·3 mg/kg, or 0·6 mg/kg) or placebo following a 1:1 assignment of the first two eligible patients in each cohort for sentinel dosing. Patients in part B received three administrations of KAN-101 or placebo followed by a 3-day oral gluten challenge (9 g per day) 1 week after completing dosing. Study personnel and patients were masked to treatment assignments in part B, and not in part A. The primary endpoint was the incidence and severity of adverse events with escalating doses of KAN-101, assessed in all patients who received any amount of study drug based on dose level received. The secondary endpoint was assessment of plasma concentrations and pharmacokinetic parameters of KAN-101 following single and multiple doses, assessed in all patients who received at least one dose and had one or more values for drug concentration. This study is registered with ClinicalTrials.gov, NCT04248855, and is completed. FINDINGS: Between Feb 7, 2020, and Oct 8, 2021, 41 patients were enrolled at ten US sites. 14 patients were assigned to part A (four 0·15 mg/kg, three 0·3 mg/kg, three 0·6 mg/kg, three 1·2 mg/kg, one 1·5 mg/kg) and 27 patients to part B (six 0·15 mg/kg with two placebo, seven 0·3 mg/kg with two placebo, and eight 0·6 mg/kg with two placebo). Treatment-related adverse events were reported in 11 (79%) of 14 patients in part A and 18 (67%) of 27 in part B (placebo two [33%] of six patients; KAN-101 16 [76%] of 21 patients), were grade 2 or lower, and were mild to moderate in severity. The most commonly observed adverse events were nausea, diarrhoea, abdominal pain, and vomiting, consistent with symptoms had by patients with coeliac disease on gluten ingestion. No grade 3-4 adverse events, serious adverse events, dose-limiting toxicities, or deaths occurred. Pharmacokinetic analyses showed KAN-101 was cleared from systemic circulation within roughly 6 h with a geometric mean half-life of 3·72 min (CV% 6·5%) to 31·72 min (83·7%), and no accumulation with repeated dosing. INTERPRETATION: KAN-101 has an acceptable safety profile in patients with coeliac disease with no dose-limiting toxicities and no maximum tolerated dose was observed. Rapid systemic clearance of KAN-101 was observed and no accumulation on repeated dosing. A future study will evaluate the safety and efficacy, including biomarker responses with a gluten challenge, of KAN-101 at doses 0·6 mg/kg and greater in patients with coeliac disease. FUNDING: Kanyos Bio.


Subject(s)
Celiac Disease , Adult , Humans , Celiac Disease/drug therapy , Treatment Outcome , Gliadin/therapeutic use , Glutens/adverse effects , Liver
11.
Arch Dis Child ; 108(4): 264-270, 2023 04.
Article in English | MEDLINE | ID: mdl-36521861

ABSTRACT

OBJECTIVE: We aimed to examine the parent-reported factors contributing to the emergency department (ED) presentation of children and adolescents with autism spectrum disorder (autism) and/or intellectual disability (ID) with behaviours of concern (BOC). DESIGN: Qualitative study using semistructured interviews. Data were analysed phenomenologically using inductive thematic analysis. SETTING: The ED of the Royal Children's Hospital, Melbourne, Australia, a tertiary paediatric hospital. PARTICIPANTS: 14 parents and/or carers of children and adolescents with autism and/or ID who presented to ED for management of BOC. RESULTS: Three themes emerged from the data: (1) Parents and carers had difficulties navigating the healthcare system and accessing appropriate community supports prior to their child's ED presentation; (2) Families presented to ED due to an inability to manage risk and/or contain their child's behaviour, compounded by carer burn-out; (3) Presentation to ED was considered a last resort option for many families. The ED was generally unable to assist families in the ongoing management of their child's BOC, leading to a potential need to re-present in future. CONCLUSIONS: This study highlights the need for families of children with autism and ID and associated BOC to have improved access to appropriately skilled community health professionals, allowing their BOC to be addressed as they emerge rather than at crisis point. The findings additionally highlight the need for changes to the delivery of acute care in the management of BOC, to minimise patient distress and maximise safe and satisfactory patient outcomes.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Child , Humans , Adolescent , Autism Spectrum Disorder/therapy , Emergency Service, Hospital , Parents , Australia
12.
Cancers (Basel) ; 14(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36497487

ABSTRACT

B cell antigen receptor (BCR) signalling competence is critical for the pathogenesis of chronic lymphocytic leukaemia (CLL). Defining key proteins that facilitate these networks aid in the identification of targets for therapeutic exploitation. We previously demonstrated that reduced PKCα function in mouse hematopoietic stem/progenitor cells (HPSCs) resulted in PKCßII upregulation and generation of a poor-prognostic CLL-like disease. Here, prkcb knockdown in HSPCs leads to reduced survival of PKCα-KR-expressing CLL-like cells, concurrent with reduced expression of the leukemic markers CD5 and CD23. SP1 promotes elevated expression of prkcb in PKCα-KR expressing cells enabling leukemogenesis. Global gene analysis revealed an upregulation of genes associated with B cell activation in PKCα-KR expressing cells, coincident with upregulation of PKCßII: supported by activation of key signalling hubs proximal to the BCR and elevated proliferation. Ibrutinib (BTK inhibitor) or enzastaurin (PKCßII inhibitor) treatment of PKCα-KR expressing cells and primary CLL cells showed similar patterns of Akt/mTOR pathway inhibition, supporting the role for PKCßII in maintaining proliferative signals in our CLL mouse model. Ibrutinib or enzastaurin treatment also reduced PKCα-KR-CLL cell migration towards CXCL12. Overall, we demonstrate that PKCß expression facilitates leukemogenesis and identify that BCR-mediated signalling is a key driver of CLL development in the PKCα-KR model.

13.
Sci Transl Med ; 13(613): eabd5016, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34586834

ABSTRACT

Inhibition of autophagy has been proposed as a potential therapy for individuals with cancer. However, current lysosomotropic autophagy inhibitors have demonstrated limited efficacy in clinical trials. Therefore, validation of novel specific autophagy inhibitors using robust preclinical models is critical. In chronic myeloid leukemia (CML), minimal residual disease is maintained by persistent leukemic stem cells (LSCs), which drive tyrosine kinase inhibitor (TKI) resistance and patient relapse. Here, we show that deletion of autophagy-inducing kinase ULK1 (unc-51­like autophagy activating kinase 1) reduces growth of cell line and patient-derived xenografted CML cells in mouse models. Using primitive cells, isolated from individuals with CML, we demonstrate that pharmacological inhibition of ULK1 selectively targets CML LSCs ex vivo and in vivo, when combined with TKI treatment. The enhanced TKI sensitivity after ULK1-mediated autophagy inhibition is driven by increased mitochondrial respiration and loss of quiescence and points to oxidative stress­induced differentiation of CML LSCs, proposing an alternative strategy for treating patients with CML.


Subject(s)
Autophagy , Oxidative Stress , Autophagy-Related Protein-1 Homolog/metabolism , Cell Differentiation , Stem Cells/metabolism
14.
AANA J ; 88(5): 398-404, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32990210

ABSTRACT

Certified Registered Nurse Anesthetists (CRNAs) are exposed to multiple job-related stressors and therefore experience high levels of occupational stress and job burnout. In healthcare systems, job burnout from occupational stress may lead to poor patient care and safety outcomes. Prior research findings suggest nurses who reported higher levels of emotional intelligence (EI) had significantly lower work-related stress and less job burnout than nurses who reported lower levels of EI. To date, the relationship between EI and occupational stress among CRNAs has not been studied. The purpose of this study was to determine if a relationship exists between EI levels and workplace stress levels among CRNAs. A descriptive survey design was used to answer the research question. Findings from the study reveal a significant relationship between the levels of EI and levels of stress in the CRNA population surveyed (r = -0.20, P = .01). CRNAs who reported higher levels of EI experienced less workplace stress than CRNAs who reported lower levels of EI. Additional findings suggest that CRNAs who have higher levels of EI are better able to cope with occupational stressors. Developing and implementing strategies to increase EI among CRNAs may be key to decreasing work-related stress and burnout.


Subject(s)
Emotional Intelligence , Nurse Anesthetists/psychology , Occupational Stress , Stress, Psychological , Adult , Aged , Female , Humans , Male , Michigan , Middle Aged , Surveys and Questionnaires
15.
Front Psychol ; 11: 1357, 2020.
Article in English | MEDLINE | ID: mdl-32765335

ABSTRACT

For practical and theoretical purposes, tests of second language (L2) ability commonly aim to measure one overarching trait, general language ability, while simultaneously measuring multiple sub-traits (e.g., reading, grammar, etc.). This tension between measuring uni- and multi-dimensional constructs concurrently can generate vociferous debate about the precise nature of the construct(s) being measured. In L2 testing, this tension is often addressed through the use of a higher-order factor model wherein multidimensional traits representing subskills load on a general ability latent trait. However, an alternative modeling framework that is currently uncommon in language testing, but gaining traction in other disciplines, is the bifactor model. The bifactor model hypothesizes a general factor, onto which all items load, and a series of orthogonal (uncorrelated) skill-specific grouping factors. The model is particularly valuable for evaluating the empirical plausibility of subscales and the practical impact of dimensionality assumptions on test scores. This paper compares a range of CFA model structures with the bifactor model in terms of theoretical implications and practical considerations, framed for the language testing audience. The models are illustrated using primary data from the British Council's Aptis English test. The paper is intended to spearhead the uptake of the bifactor model within the cadre of measurement models used in L2 language testing.

16.
ANS Adv Nurs Sci ; 43(3): 239-250, 2020.
Article in English | MEDLINE | ID: mdl-32732606

ABSTRACT

Utilizing Whall and associates' philosophical analysis method, the concept of spiritual coping was critically evaluated to determine the relevance of this concept to nursing science. Studies were included in the literature review if participants were 55 years and older, as this cohort has reported using more spiritual coping strategies than younger cohorts. Twenty-four articles were reviewed and revealed 3 recurrent themes: enhanced physical, psychological, and social well-being, resilience, and self-transcendence. Support for the relevance of spiritual coping to nursing science was found, as these themes were easily placed within the context of 3 postmodern philosophical approaches and multiple extant nursing theories.


Subject(s)
Adaptation, Psychological , Attitude to Health , Quality of Life/psychology , Spirituality , Adult , Age Factors , Holistic Nursing/methods , Humans , Male , Middle Aged , Religion and Medicine , Self Concept
17.
Br J Cancer ; 123(1): 137-147, 2020 07.
Article in English | MEDLINE | ID: mdl-32390008

ABSTRACT

BACKGROUND: Indoleamine 2,3-dioxygenase (IDO), the first step in the kynurenine pathway (KP), is upregulated in some cancers and represents an attractive therapeutic target given its role in tumour immune evasion. However, the recent failure of an IDO inhibitor in a late phase trial raises questions about this strategy. METHODS: Matched renal cell carcinoma (RCC) and normal kidney tissues were subject to proteomic profiling. Tissue immunohistochemistry and gene expression data were used to validate findings. Phenotypic effects of loss/gain of expression were examined in vitro. RESULTS: Quinolate phosphoribosyltransferase (QPRT), the final and rate-limiting enzyme in the KP, was identified as being downregulated in RCC. Loss of QPRT expression led to increased potential for anchorage-independent growth. Gene expression, mass spectrometry (clear cell and chromophobe RCC) and tissue immunohistochemistry (clear cell, papillary and chromophobe), confirmed loss or decreased expression of QPRT and showed downregulation of other KP enzymes, including kynurenine 3-monoxygenase (KMO) and 3-hydroxyanthranilate-3,4-dioxygenase (HAAO), with a concomitant maintenance or upregulation of nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in the NAD+ salvage pathway. CONCLUSIONS: Widespread dysregulation of the KP is common in RCC and is likely to contribute to tumour immune evasion, carrying implications for effective therapeutic targeting of this critical pathway.


Subject(s)
3-Hydroxyanthranilate 3,4-Dioxygenase/genetics , Carcinoma, Renal Cell/genetics , Cytokines/genetics , Kynurenine 3-Monooxygenase/genetics , Kynurenine/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Kynurenine/metabolism , Metabolic Networks and Pathways/genetics , Proteomics , Tumor Escape/genetics , Tumor Escape/immunology
18.
Article in English | MEDLINE | ID: mdl-32042286

ABSTRACT

BACKGROUND: To evaluate the effects of fluticasone furoate on the hypothalamic-pituitary-adrenocortical axis, and the safety and tolerability of fluticasone furoate treatment in children with asthma. METHODS: This was a randomized, double-blind, placebo-controlled, multicenter, stratified, parallel-group, non-inferiority study of fluticasone furoate 50 µg inhalation powder administered once daily. The study enrolled children (aged 5-11 years inclusive) with a documented diagnosis of asthma for ≥ 6 months and a Childhood Asthma Control Test score of > 19. After a 7-14-day run-in period, eligible subjects were stratified by age and randomized to fluticasone furoate 50 µg once daily or placebo once daily via ELLIPTA for 6 weeks. The primary endpoint was the change from baseline (expressed as a ratio) in 0-24-h weighted mean serum cortisol at the end of the treatment period. RESULTS: Fifty-six randomized subjects received fluticasone furoate 50 µg once daily and 55 received placebo. The primary analysis was performed in the serum cortisol population (n = 104) and demonstrated that fluticasone furoate 50 µg once daily was non-inferior to placebo (ratio = 0.93; 95% confidence interval 0.8096, 1.0620), as the lower limit of the 95% confidence interval for the geometric mean treatment ratio of fluticasone furoate 50 µg once daily versus placebo was greater than 0.80. Findings from the intent-to-treat population (n = 111) were similar. CONCLUSIONS: Six weeks of treatment with inhaled fluticasone furoate 50 µg once daily had no clinically relevant effect on the hypothalamic-pituitary-adrenocortical axis function of children, as measured by 24-h serum cortisol profiles. The primary analysis showed that fluticasone furoate 50 µg once daily was non-inferior to placebo. Fluticasone furoate 50 µg once daily was well tolerated and no new safety concerns emerged during the study. TRIAL REGISTRATION: This study is registered in ClinicalTrials.gov (NCT02483975). Date of submission: 25 June 2015.

20.
Leukemia ; 34(6): 1613-1625, 2020 06.
Article in English | MEDLINE | ID: mdl-31896780

ABSTRACT

The introduction of BCR-ABL tyrosine kinase inhibitors has revolutionized the treatment of chronic myeloid leukemia (CML). A major clinical aim remains the identification and elimination of low-level disease persistence, termed "minimal residual disease". The phenomenon of disease persistence suggests that despite targeted therapeutic approaches, BCR-ABL-independent mechanisms exist which sustain the survival of leukemic stem cells (LSCs). Although other markers of a primitive CML LSC population have been identified in the preclinical setting, only CD26 appears to offer clinical utility. Here we demonstrate consistent and selective expression of CD93 on a lin-CD34+CD38-CD90+ CML LSC population and show in vitro and in vivo data to suggest increased stem cell characteristics, as well as robust engraftment in patient-derived xenograft models in comparison with a CD93- CML stem/progenitor cell population, which fails to engraft. Through bulk and single-cell analyses of selected stem cell and cell survival-specific genes, we confirmed the quiescent character and demonstrate their persistence in a population of CML patient samples who demonstrate molecular relapse on TKI withdrawal. Taken together, our results identify that CD93 is consistently and selectively expressed on a lin-CD34+CD38-CD90+ CML LSC population with stem cell characteristics and may be an important indicator in determining poor TKI responders.


Subject(s)
Biomarkers, Tumor/analysis , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Membrane Glycoproteins/metabolism , Neoplastic Stem Cells/pathology , Receptors, Complement/metabolism , Animals , Drug Resistance, Neoplasm/physiology , Heterografts , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Neoplasm, Residual/metabolism , Neoplasm, Residual/pathology , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...