Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 541, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225245

ABSTRACT

Efferocytic clearance of apoptotic cells in general, and T cells in particular, is required for tissue and immune homeostasis. Transmembrane mucins are extended glycoproteins highly expressed in the cell glycocalyx that function as a barrier to phagocytosis. Whether and how mucins may be regulated during cell death to facilitate efferocytic corpse clearance is not well understood. Here we show that normal and transformed human T cells express a subset of mucins which are rapidly and selectively removed from the cell surface during apoptosis. This process is mediated by the ADAM10 sheddase, the activity of which is associated with XKR8-catalyzed flipping of phosphatidylserine to the outer leaflet of the plasma membrane. Mucin clearance enhances uptake of apoptotic T cells by macrophages, confirming mucins as an enzymatically-modulatable barrier to efferocytosis. Together these findings demonstrate a glycocalyx regulatory pathway with implications for therapeutic intervention in the clearance of normal and transformed apoptotic T cells.


Subject(s)
Efferocytosis , Mucins , Humans , T-Lymphocytes/metabolism , Apoptosis , Phagocytosis , ADAM10 Protein/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Amyloid Precursor Protein Secretases
2.
J Leukoc Biol ; 112(5): 1329-1342, 2022 11.
Article in English | MEDLINE | ID: mdl-35588259

ABSTRACT

While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb), the agent of TB in humans, worsens HIV-1 pathogenesis still need to be fully elucidated. Recently, we showed that HIV-1 infection and spread are exacerbated in macrophages exposed to TB-associated microenvironments. Transcriptomic analysis of macrophages conditioned with medium of Mtb-infected human macrophages (cmMTB) revealed an up-regulation of the typeI interferon (IFN-I) pathway, characterized by the overexpression of IFN-inducible genes. Historically, IFN-I are well known for their antiviral functions, but our previous work showed that this is not the case in the context of coinfection with HIV-1. Here, we show that the IFN-I response signature in cmMTB-treated macrophages matches the one observed in the blood of active TB patients, and depends on the timing of incubation with cmMTB. This suggests that the timing of macrophage's exposure to IFN-I can impact their capacity to control HIV-1 infection. Strikingly, we found that cmMTB-treated macrophages are hyporesponsive to extrastimulation with exogenous IFN-I, used to mimic HIV-1 infection. Yet, depleting STAT1 by gene silencing to block the IFN-I signaling pathway reduced TB-induced exacerbation of HIV-1 infection. Altogether, by aiming to understand why TB-derived IFN-I preexposure of macrophages did not induce antiviral immunity against HIV-1, we demonstrated that these cells are hyporesponsive to exogenous IFN-I, a phenomenon that prevents macrophage activation against HIV-1.


Mycobacterium tuberculosis induces hyporesponsiveness of the IFN-I signaling pathway in macrophages, leading to the exacerbation of HIV-1 replication.


Subject(s)
Coinfection , HIV Infections , Interferon Type I , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Humans , HIV-1 , Macrophages/metabolism , Macrophages/virology , Signal Transduction , Tuberculosis/metabolism , Interferon Type I/metabolism
3.
Front Immunol ; 13: 895488, 2022.
Article in English | MEDLINE | ID: mdl-36591218

ABSTRACT

Macrophage distribution density is tightly regulated within the body, yet the importance of macrophage crowding during in vitro culture is largely unstudied. Using a human induced pluripotent stem cell (iPSC)-derived macrophage model of tissue resident macrophages, we characterize how increasing macrophage culture density changes their morphology and phenotype before and after inflammatory stimulation. In particular, density drives changes in macrophage inflammatory cytokine and chemokine secretion in both resting and activated states. This density regulated inflammatory state is also evident in blood monocyte derived-macrophages, the human monocytic THP-1 immortalized cell line, and iPSC-derived microglia. Density-dependent changes appear to be driven by a transferable soluble factor, yet the precise mechanism remains unknown. Our findings highlight cell plating density as an important but frequently overlooked consideration of in vitro macrophage research relevant to a variety of fields ranging from basic macrophage cell biology to disease studies.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Monocytes/metabolism , Cytokines/metabolism
4.
Sci Rep ; 11(1): 13638, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211037

ABSTRACT

Human cells respond to infection by SARS-CoV-2, the virus that causes COVID-19, by producing cytokines including type I and III interferons (IFNs) and proinflammatory factors such as IL6 and TNF. IFNs can limit SARS-CoV-2 replication but cytokine imbalance contributes to severe COVID-19. We studied how cells detect SARS-CoV-2 infection. We report that the cytosolic RNA sensor MDA5 was required for type I and III IFN induction in the lung cancer cell line Calu-3 upon SARS-CoV-2 infection. Type I and III IFN induction further required MAVS and IRF3. In contrast, induction of IL6 and TNF was independent of the MDA5-MAVS-IRF3 axis in this setting. We further found that SARS-CoV-2 infection inhibited the ability of cells to respond to IFNs. In sum, we identified MDA5 as a cellular sensor for SARS-CoV-2 infection that induced type I and III IFNs.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/immunology , Interferons/immunology , SARS-CoV-2/immunology , Cell Line , Humans , Immunity, Innate , RNA/immunology , Interferon Lambda
5.
J Extracell Vesicles ; 10(3): e12046, 2021 01.
Article in English | MEDLINE | ID: mdl-33489013

ABSTRACT

The identification of individuals with null alleles enables studying how the loss of gene function affects infection. We previously described a non-functional variant in SIGLEC1, which encodes the myeloid-cell receptor Siglec-1/CD169 implicated in HIV-1 cell-to-cell transmission. Here we report a significant association between the SIGLEC1 null variant and extrapulmonary dissemination of Mycobacterium tuberculosis (Mtb) in two clinical cohorts comprising 6,256 individuals. Local spread of bacteria within the lung is apparent in Mtb-infected Siglec-1 knockout mice which, despite having similar bacterial load, developed more extensive lesions compared to wild type mice. We find that Siglec-1 is necessary to induce antigen presentation through extracellular vesicle uptake. We postulate that lack of Siglec-1 delays the onset of protective immunity against Mtb by limiting antigen exchange via extracellular vesicles, allowing for an early local spread of mycobacteria that increases the risk for extrapulmonary dissemination.


Subject(s)
Extracellular Vesicles/immunology , Mycobacterium tuberculosis/immunology , Sialic Acid Binding Ig-like Lectin 1/genetics , Animals , Antigen Presentation/immunology , Humans , Immunity/genetics , Lung/microbiology , Lung/pathology , Mice , Mycobacterium tuberculosis/pathogenicity , Sialic Acid Binding Ig-like Lectin 1/immunology , Tuberculosis, Lymph Node/microbiology , Tuberculosis, Lymph Node/pathology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
7.
Viruses ; 12(5)2020 04 28.
Article in English | MEDLINE | ID: mdl-32354203

ABSTRACT

Many pathogens infect macrophages as part of their intracellular life cycle. This is particularly true for viruses, of which HIV-1 is one of the best studied. HIV-1 infection of macrophages has important consequences for viral persistence and pathogenesis, but the mechanisms of macrophage infection remain to be fully elucidated. Despite expressing viral entry receptors, macrophages are inefficiently infected by cell-free HIV-1 virions, whereas direct cell-cell spread is more efficient. Different modes of cell-cell spread have been described, including the uptake by macrophages of infected T cells and the fusion of infected T cells with macrophages, both leading to macrophage infection. Cell-cell spread can also transmit HIV-1 between macrophages and from macrophages to T cells. Here, we describe the current state of the field concerning the cell-cell spread of HIV-1 to and from macrophages, discuss mechanisms, and highlight potential in vivo relevance.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Macrophages/virology , Animals , CD4-Positive T-Lymphocytes/cytology , Cell Communication , HIV Infections/physiopathology , HIV-1/genetics , Humans , Macrophages/cytology
8.
Elife ; 92020 03 30.
Article in English | MEDLINE | ID: mdl-32223897

ABSTRACT

While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb) worsens HIV-1 pathogenesis remain scarce. We showed that HIV-1 infection is exacerbated in macrophages exposed to TB-associated microenvironments due to tunneling nanotube (TNT) formation. To identify molecular factors associated with TNT function, we performed a transcriptomic analysis in these macrophages, and revealed the up-regulation of Siglec-1 receptor. Siglec-1 expression depends on Mtb-induced production of type I interferon (IFN-I). In co-infected non-human primates, Siglec-1 is highly expressed by alveolar macrophages, whose abundance correlates with pathology and activation of IFN-I/STAT1 pathway. Siglec-1 localizes mainly on microtubule-containing TNT that are long and carry HIV-1 cargo. Siglec-1 depletion decreases TNT length, diminishes HIV-1 capture and cell-to-cell transfer, and abrogates the exacerbation of HIV-1 infection induced by Mtb. Altogether, we uncover a deleterious role for Siglec-1 in TB-HIV-1 co-infection and open new avenues to understand TNT biology.


Subject(s)
HIV-1/pathogenicity , Interferon Type I/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Sialic Acid Binding Ig-like Lectin 1/genetics , Tuberculosis, Pulmonary/immunology , Animals , Cells, Cultured , Coinfection/immunology , Female , Gene Expression Profiling , HIV Infections , Humans , Macaca mulatta , Male , Nanotubes , Sialic Acid Binding Ig-like Lectin 1/immunology
10.
mBio ; 10(6)2019 11 19.
Article in English | MEDLINE | ID: mdl-31744918

ABSTRACT

Dendritic cells (DCs) and macrophages as well as osteoclasts (OCs) are emerging as target cells of HIV-1 involved in virus transmission, dissemination, and establishment of persistent tissue virus reservoirs. While these myeloid cells are poorly infected by cell-free viruses because of the high expression levels of cellular restriction factors such as SAMHD1, we show here that HIV-1 uses a specific and common cell-to-cell fusion mechanism for virus transfer and dissemination from infected T lymphocytes to the target cells of the myeloid lineage, including immature DCs (iDCs), OCs, and macrophages, but not monocytes and mature DCs. The establishment of contacts with infected T cells leads to heterotypic cell fusion for the fast and massive transfer of viral material into OC and iDC targets, which subsequently triggers homotypic fusion with noninfected neighboring OCs and iDCs for virus dissemination. These two cell-to-cell fusion processes are not restricted by SAMHD1 and allow very efficient spreading of virus in myeloid cells, resulting in the formation of highly virus-productive multinucleated giant cells. These results reveal the cellular mechanism for SAMHD1-independent cell-to-cell spreading of HIV-1 in myeloid cell targets through the formation of the infected multinucleated giant cells observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients.IMPORTANCE We demonstrate that HIV-1 uses a common two-step cell-to-cell fusion mechanism for massive virus transfer from infected T lymphocytes and dissemination to myeloid target cells, including dendritic cells and macrophages as well as osteoclasts. This cell-to-cell infection process bypasses the restriction imposed by the SAMHD1 host cell restriction factor for HIV-1 replication, leading to the formation of highly virus-productive multinucleated giant cells as observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients. Since myeloid cells are emerging as important target cells of HIV-1, these results contribute to a better understanding of the role of these myeloid cells in pathogenesis, including cell-associated virus sexual transmission, cell-to-cell virus spreading, and establishment of long-lived viral tissue reservoirs.


Subject(s)
HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Viral Tropism , Virus Replication , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/metabolism , Dendritic Cells/virology , Humans , Macrophages/metabolism , Macrophages/virology , Myeloid Cells/metabolism , Myeloid Cells/virology
11.
Cell Rep ; 26(13): 3586-3599.e7, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917314

ABSTRACT

The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.


Subject(s)
HIV Infections/complications , Interleukin-10/metabolism , Macrophages/pathology , Nanotubes , STAT3 Transcription Factor/metabolism , Tuberculosis, Pulmonary/complications , Adult , Aged , Animals , Cells, Cultured , Coinfection/pathology , Coinfection/virology , Female , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Humans , Macaca mulatta , Macrophage Activation , Macrophages/virology , Male , Middle Aged , Mycobacterium tuberculosis , Signal Transduction , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Virus Replication , Young Adult
12.
Proc Natl Acad Sci U S A ; 115(19): E4358-E4367, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686076

ABSTRACT

Trigonelline (TG; N-methylnicotinate) is a ubiquitous osmolyte. Although it is known that it can be degraded, the enzymes and metabolites have not been described so far. In this work, we challenged the laboratory model soil-borne, gram-negative bacterium Acinetobacter baylyi ADP1 (ADP1) for its ability to grow on TG and we identified a cluster of catabolic, transporter, and regulatory genes. We dissected the pathway to the level of enzymes and metabolites, and proceeded to in vitro reconstruction of the complete pathway by six purified proteins. The four enzymatic steps that lead from TG to methylamine and succinate are described, and the structures of previously undescribed metabolites are provided. Unlike many aromatic compounds that undergo hydroxylation prior to ring cleavage, the first step of TG catabolism proceeds through direct cleavage of the C5-C6 bound, catalyzed by a flavin-dependent, two-component oxygenase, which yields (Z)-2-((N-methylformamido)methylene)-5-hydroxy-butyrolactone (MFMB). MFMB is then oxidized into (E)-2-((N-methylformamido) methylene) succinate (MFMS), which is split up by a hydrolase into carbon dioxide, methylamine, formic acid, and succinate semialdehyde (SSA). SSA eventually fuels up the TCA by means of an SSA dehydrogenase, assisted by a Conserved Hypothetical Protein. The cluster is conserved across marine, soil, and plant-associated bacteria. This emphasizes the role of TG as a ubiquitous nutrient for which an efficient microbial catabolic toolbox is available.


Subject(s)
Acinetobacter , Alkaloids/metabolism , Genome, Bacterial , Molecular Sequence Annotation , Multigene Family , Acinetobacter/enzymology , Acinetobacter/genetics , Chromatography, Liquid , Mass Spectrometry
13.
Front Immunol ; 9: 459, 2018.
Article in English | MEDLINE | ID: mdl-29593722

ABSTRACT

The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10-/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.


Subject(s)
Acetyl-CoA C-Acetyltransferase/immunology , Gene Expression Regulation, Enzymologic/immunology , Interleukin-10/immunology , Mycobacterium tuberculosis/immunology , Pleural Effusion/immunology , STAT3 Transcription Factor/immunology , Sterol O-Acyltransferase , Tuberculosis, Pleural/immunology , Up-Regulation/immunology , Acetyl-CoA C-Acetyltransferase/genetics , Animals , Female , Foam Cells , Humans , Interleukin-10/genetics , Male , Mice , Mice, Knockout , Mycobacterium tuberculosis/genetics , Pleural Effusion/genetics , Pleural Effusion/pathology , STAT3 Transcription Factor/genetics , Tuberculosis, Pleural/genetics , Tuberculosis, Pleural/pathology
14.
Proc Natl Acad Sci U S A ; 115(11): E2556-E2565, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29463701

ABSTRACT

Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.


Subject(s)
Bone Resorption/etiology , HIV Infections/complications , HIV-1/physiology , Osteoclasts/virology , Actins/metabolism , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/physiopathology , Bone and Bones/metabolism , Cell Adhesion , Female , HIV Infections/metabolism , HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , Humans , Mice , Osteoclasts/cytology , Osteoclasts/metabolism , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
15.
Front Immunol ; 9: 43, 2018.
Article in English | MEDLINE | ID: mdl-29422895

ABSTRACT

Tunneling nanotubes (TNT) are dynamic connections between cells, which represent a novel route for cell-to-cell communication. A growing body of evidence points TNT towards a role for intercellular exchanges of signals, molecules, organelles, and pathogens, involving them in a diverse array of functions. TNT form among several cell types, including neuronal cells, epithelial cells, and almost all immune cells. In myeloid cells (e.g., macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions. Importantly, TNT enable myeloid cells to communicate with a targeted neighboring or distant cell, as well as with other cell types, therefore creating a complex variety of cellular exchanges. TNT also contribute to pathogen spread as they serve as "corridors" from a cell to another. Herein, we addressed the complexity of the definition and in vitro characterization of TNT in innate immune cells, the different processes involved in their formation, and their relevance in vivo. We also assess our current understanding of how TNT participate in immune surveillance and the spread of pathogens, with a particular interest for HIV-1. Overall, despite recent progress in this growing research field, we highlight that further investigation is needed to better unveil the role of TNT in both physiological and pathological conditions.


Subject(s)
Cell Communication/physiology , Immunologic Surveillance/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Nanotubes , Animals , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , Humans , Immunity, Innate/immunology , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...