Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 269
1.
PLoS One ; 19(2): e0297281, 2024.
Article En | MEDLINE | ID: mdl-38359031

Multiple studies report that melanomas are innervated tumors with sensory and sympathetic fibers where these neural fibers play crucial functional roles in tumor growth and metastasis with branch specificity. Yet there is no study which reports the direct neural recording and its pattern during in-vivo progression of the cancer. We performed daily neural recordings from male and female mice bearing orthotopic metastasizing- melanomas and melanomas with low metastatic poential, derived from B16-F10 and B16-F1 cells, respectively. Further, to explore the origins of neural activity, 6-Hydroxidopamine mediated chemical sympathectomy was performed followed by daily microneurographic recordings. We also performed the daily bioluminescent imaging to track in vivo growth of primary tumors and distant metastasis to the cranial area. Our results show that metastasizing tumors display high levels of neural activity while tumors with low metastatic potential lack it indicating that the presence of neural activity is linked to the metastasizing potential of the tumors. Moreover, the neural activity is not continuous over the tumor progression and has a sex-specific temporal patterns where males have two peaks of high neural activity while females show a single peak. The neural peak activity originated in peripheral sympathetic nerves as sympathectomy completely eliminated the peak activity in both sexes. Peak activities were highly correlated with the distant metastasis in both sexes. These results show that sympathetic neural activity is crucially involved in tumor metastasis and has sex-specific role in malignancy initiation.


Melanoma , Male , Female , Animals , Mice , Melanoma/pathology , Neoplasm Metastasis
2.
Epilepsia Open ; 9(1): 210-222, 2024 Feb.
Article En | MEDLINE | ID: mdl-37926917

OBJECTIVE: Neurostimulation is an emerging treatment for patients with drug-resistant epilepsy, which is used to suppress, prevent, and terminate seizure activity. Unfortunately, after implantation and despite best clinical practice, most patients continue to have persistent seizures even after years of empirical optimization. The objective of this study is to determine optimal spatial and amplitude properties of neurostimulation in inhibiting epileptiform activity in an acute hippocampal seizure model. METHODS: We performed high-throughput testing of high-frequency focal brain stimulation in the acute intrahippocampal kainic acid mouse model of status epilepticus. We evaluated combinations of six anatomic targets and three stimulus amplitudes. RESULTS: We found that the spike-suppressive effects of high-frequency neurostimulation are highly dependent on the stimulation amplitude and location, with higher amplitude stimulation being significantly more effective. Epileptiform spiking activity was significantly reduced with ipsilateral 250 µA stimulation of the CA1 and CA3 hippocampal regions with 21.5% and 22.2% reductions, respectively. In contrast, we found that spiking frequency and amplitude significantly increased with stimulation of the ventral hippocampal commissure. We further found spatial differences with broader effects from CA1 versus CA3 stimulation. SIGNIFICANCE: These findings demonstrate that the effects of therapeutic neurostimulation in an acute hippocampal seizure model are highly dependent on the location of stimulation and stimulus amplitude. We provide a platform to optimize the anti-seizure effects of neurostimulation, and demonstrate that an exploration of the large electrical parameter and location space can improve current modalities for treating epilepsy. PLAIN LANGUAGE SUMMARY: In this study, we tested how electrical pulses in the brain can help control seizures in mice. We found that the electrode's placement and the stimulation amplitude had a large effect on outcomes. Some brain regions, notably nearby CA1 and CA3, responded positively with reduced seizure-like activities, while others showed increased activity. These findings emphasize that choosing the right spot for the electrode and adjusting the strength of electrical pulses are both crucial when considering neurostimulation treatments for epilepsy.


Epilepsy , Status Epilepticus , Humans , Mice , Animals , Kainic Acid , Epilepsy/therapy , Hippocampus , Brain , Disease Models, Animal , Status Epilepticus/chemically induced , Status Epilepticus/therapy
3.
J Neural Eng ; 20(6)2024 01 04.
Article En | MEDLINE | ID: mdl-38100824

Objective. The primary challenge faced in the field of neural rehabilitation engineering is the limited advancement in nerve interface technology, which currently fails to match the mechanical properties of small-diameter nerve fascicles. Novel developments are necessary to enable long-term, chronic recording from a multitude of small fascicles, allowing for the recovery of motor intent and sensory signals.Approach. In this study, we analyze the chronic recording capabilities of carbon nanotube yarn electrodes in the peripheral somatic nervous system. The electrodes were surgically implanted in the sciatic nerve's three individual fascicles in rats, enabling the recording of neural activity during gait. Signal-to-noise ratio (SNR) and information theory were employed to analyze the data, demonstrating the superior recording capabilities of the electrodes. Flat interface nerve electrode and thin-film longitudinal intrafascicular electrode electrodes were used as a references to assess the results from SNR and information theory analysis.Main results. The electrodes exhibited the ability to record chronic signals with SNRs reaching as high as 15 dB, providing 12 bits of information for the sciatic nerve, a significant improvement over previous methods. Furthermore, the study revealed that the SNR and information content of the neural signals remained consistent over a period of 12 weeks across three different fascicles, indicating the stability of the interface. The signals recorded from these electrodes were also analyzed for selectivity using information theory metrics, which showed an information sharing of approximately 1.4 bits across the fascicles.Significance. The ability to safely and reliably record from multiple fascicles of different nerves simultaneously over extended periods of time holds substantial implications for the field of neural and rehabilitation engineering. This advancement addresses the limitation of current nerve interface technologies and opens up new possibilities for enhancing neural rehabilitation and control.


Nanotubes, Carbon , Nerve Tissue , Rats , Animals , Electrodes, Implanted , Sciatic Nerve/physiology , Electrodes , Signal-To-Noise Ratio , Peripheral Nerves/physiology
4.
Nat Commun ; 14(1): 7431, 2023 11 16.
Article En | MEDLINE | ID: mdl-37973928

Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation.


Bacterial Toxins , NF-kappa B , NF-kappa B/metabolism , Bacterial Toxins/metabolism , Endocytosis , Endosomes/metabolism , Peptides/metabolism , Protein Transport
5.
Epilepsy Curr ; 23(5): 298-302, 2023.
Article En | MEDLINE | ID: mdl-37901784

This review discusses the use of neurostimulation therapies for epilepsy treatment, including vagal nerve stimulation, responsive neurostimulation, and deep brain stimulation. Different therapeutic strategies and their underlying mechanisms are explored, with a focus on optimizing parameters for seizure reduction. The review also highlights the paradigm shift toward a more diverse and multimodal approach to deep brain neuromodulation.

7.
bioRxiv ; 2023 Mar 09.
Article En | MEDLINE | ID: mdl-36945383

Objective: Neurostimulation is an emerging treatment for patients with medically refractory epilepsy, which is used to suppress, prevent, and terminate seizure activity. Unfortunately, after implantation and despite best clinical practice, most patients continue to have persistent seizures even after years of empirical optimization. The objective of this study is to determine optimal spatial and amplitude properties of neurostimulation in inhibiting epileptiform activity in an acute hippocampal seizure model. Methods: We performed high-throughput testing of high-frequency focal brain stimulation in the acute intrahippocampal kainic acid mouse model of temporal lobe epilepsy. We evaluated combinations of six anatomic targets and three stimulus amplitudes. Results: We found that the spike-suppressive effects of high-frequency neurostimulation are highly dependent on the stimulation amplitude and location, with higher amplitude stimulation being significantly more effective. Epileptiform spiking activity was significantly reduced with ipsilateral 250 µA stimulation of the CA1 and CA3 hippocampal regions with 21.5% and 22.2% reductions, respectively. In contrast, we found that spiking frequency and amplitude significantly increased with stimulation of the ventral hippocampal commissure. We further found spatial differences with broader effects from CA1 versus CA3 stimulation. Significance: These findings demonstrate that the effects of therapeutic neurostimulation in an acute hippocampal seizure model are highly dependent on the location of stimulation and stimulus amplitude. We provide a platform to optimize the anti-seizure effects of neurostimulation, and demonstrate that an exploration of the large electrical parameter and location space can improve current modalities for treating epilepsy. Key Points: Evaluated spatial and temporal parameters of neurostimulation in a mouse model of acute seizuresBrief bursts of high-frequency (100 Hz) stimulation effectively interrupted epileptiform activity.The suppressive effect was highly dependent on stimulation amplitude and was maximal at the ipsilateral CA1 and CA3 regions.Pro-excitatory effects were identified with high-amplitude high-frequency stimulation at the ventral hippocampal commissure and contralateral CA1.

8.
BMC Biol ; 20(1): 176, 2022 08 09.
Article En | MEDLINE | ID: mdl-35945584

BACKGROUND: Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS: We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION: Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.


Calcium , Calmodulin , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Imidazoles , Protein Binding , Scattering, Small Angle , X-Ray Diffraction
9.
FEBS Lett ; 596(16): 2031-2040, 2022 08.
Article En | MEDLINE | ID: mdl-35568982

To enable chromosomal replication, DNA is unwound by the ATPase molecular motor replicative helicase. The bacterial helicase DnaB is a ring-shaped homo-hexamer whose conformational dynamics are being studied through its different 3D structural states adopted along its functional cycle. Our findings describe a new crystal structure for the apo-DnaB from Vibrio cholerae, forming a planar hexamer with pseudo-symmetry, constituted by a trimer of dimers in which the C-terminal domains delimit a triskelion-shaped hole. This hexamer is labile and inactive. We suggest that it represents an intermediate state allowing the formation of the active NTP-bound hexamer from dimers.


Vibrio cholerae , Bacterial Proteins , DNA Helicases , DNA Replication , DnaB Helicases , Escherichia coli , Protein Multimerization
10.
Exp Neurol ; 354: 114109, 2022 08.
Article En | MEDLINE | ID: mdl-35551899

Electric field coupling has been shown to be responsible for non-synaptic neural activity propagation in hippocampal slices and cortical slices. Epileptiform and slow-wave sleep activity can propagate by electric field coupling without using synaptic connections at speeds of ~0.1 m/s in vitro. However, the characteristics of the events that can propagate using electric field coupling through a volume conductor in vivo have not been studied. Thus, we tested the hypothesis that various types of neural signals such as interictal spikes, theta waves and seizures could propagate in vivo across a transection in the hippocampus. We induced epileptiform activity in 4 rats under anesthesia by injecting 4-aminopyridine in the temporal region of the hippocampus, four recording electrodes were inserted along the longitudinal axis of the hippocampus. A transection was made between the electrodes to study the propagation of the neural activity. Although 54% of the interictal spikes could propagate through the cut, only those spikes with a high amplitude and short duration had a high probability to do so. 70% of seizure events could propagate through the cut but parameters distinguishing between propagating and non-propagating seizure events could not be identified. Theta activity was also observed to propagate at a mean speed of 0.16 ± 0.12 m/s in the characteristic range of propagation using electric field coupling through the transection. The electric field volume conduction mechanism was confirmed by showing that propagation was blocked by placing a dielectric layer within the cut. The speed of propagation was not affected by the transection thereby providing further evidence that various types of neural signals including activity in the theta range can propagate by electric field coupling in-vivo.


Hippocampus , Seizures , Animals , Rats , Seizures/chemically induced
11.
Epilepsy Behav ; 130: 108667, 2022 05.
Article En | MEDLINE | ID: mdl-35344808

OBJECTIVE: Pharmacoresistant bilateral mesial temporal lobe epilepsy often implies poor resective surgical candidacy. Low-frequency stimulation of a fiber tract connected to bilateral hippocampi, the fornicodorsocommissural tract, has been shown to be safe and efficacious in reducing seizures in a previous short-term study. Here, we report a single-blinded, within-subject control, long-term deep-brain stimulation trial of low-frequency stimulation of the fornicodorsocommissural tract in bilateral mesial temporal lobe epilepsy. Outcomes of interest included safety with respect to verbal memory scores and reduction of seizure frequency. METHODS: Our enrollment goal was 16 adult subjects to be randomized to 2-Hz or 5-Hz low-frequency stimulation of the fornicodorsocommissural tract starting at 2 mA. The study design consisted of four two-month blocks of stimulation with a 50%-duty cycle, alternating with two-month blocks of no stimulation. RESULTS: We terminated the study after enrollment of five subjects due to slow accrual. Fornicodorsocommissural tract stimulation elicited bilateral hippocampal evoked responses in all subjects. Three subjects underwent implantation of pulse generators and long-term low-frequency stimulation with mean monthly seizures of 3.14 ±â€¯2.67 (median 3.0 [IQR 1-4.0]) during stimulation-off blocks, compared with 0.96 ±â€¯1.23 (median 1.0 [IQR 0-1.0]) during stimulation-on blocks (p = 0.0005) during the blinded phase. Generalized Estimating Equations showed that low-frequency stimulation reduced monthly seizure-frequency by 0.71 per mA (p < 0.001). Verbal memory scores were stable with no psychiatric complications or other adverse events. SIGNIFICANCE: The results demonstrate feasibility of stimulating both hippocampi using a single deep-brain stimulation electrode in the fornicodorsocommissural tract, efficacy of low-frequency stimulation in reducing seizures, and safety as regards verbal memory.


Deep Brain Stimulation , Epilepsy, Temporal Lobe , Adult , Deep Brain Stimulation/methods , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/therapy , Hippocampus/physiology , Humans , Seizures/therapy , Treatment Outcome
12.
Biol Cybern ; 116(3): 363-375, 2022 06.
Article En | MEDLINE | ID: mdl-35303154

Stochastic resonance is known as a phenomenon whereby information transmission of weak signal or subthreshold stimuli can be enhanced by additive random noise with a suitable intensity. Another phenomenon induced by applying deterministic pulsatile electric stimuli with a pulse frequency, commonly used for deep brain stimulation (DBS), was also shown to improve signal-to-noise ratio in neuron models. The objective of this study was to test the hypothesis that pulsatile high-frequency stimulation could improve the detection of both sub- and suprathreshold synaptic stimuli by tuning the frequency of the stimulation in a population of pyramidal neuron models. Computer simulations showed that mutual information estimated from a population of neural spike trains displayed a typical resonance curve with a peak value of the pulse frequency at 80-120 Hz, similar to those utilized for DBS in clinical situations. It is concluded that a "pulse-frequency-dependent resonance" (PFDR) can enhance information transmission over a broad range of synaptically connected networks. Since the resonance frequency matches that used clinically, PFDR could contribute to the mechanism of the therapeutic effect of DBS.


Neurons , Pyramidal Cells , Action Potentials/physiology , Computer Simulation , Models, Neurological , Neurons/physiology , Pyramidal Cells/physiology , Stochastic Processes
13.
Biosensors (Basel) ; 12(2)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35200374

The vagus nerve is the largest autonomic nerve and a major target of stimulation therapies for a wide variety of chronic diseases. However, chronic recording from the vagus nerve has been limited, leading to significant gaps in our understanding of vagus nerve function and therapeutic mechanisms. In this study, we use a carbon nanotube yarn (CNTY) biosensor to chronically record from the vagus nerves of freely moving rats for over 40 continuous hours. Vagal activity was analyzed using a variety of techniques, such as spike sorting, spike-firing rates, and interspike intervals. Many spike-cluster-firing rates were found to correlate with food intake, and the neural-firing rates were used to classify eating and other behaviors. To our knowledge, this is the first chronic recording and decoding of activity in the vagus nerve of freely moving animals enabled by the axon-like properties of the CNTY biosensor in both size and flexibility and provides an important step forward in our ability to understand spontaneous vagus-nerve function.


Nanotubes, Carbon , Vagus Nerve/physiology , Animals , Rats , Rodentia
14.
Contact Dermatitis ; 87(1): 62-70, 2022 Jul.
Article En | MEDLINE | ID: mdl-35213760

BACKGROUND: An aqueous antiseptic containing "chlorhexidine digluconate/benzalkonium chloride/benzyl alcohol" (CBB) is widely used in France. The only previous documented study dealing with allergic contact dermatitis (ACD) to this antiseptic is one small case series in children. The French Vigilance Network for Dermatology and Allergy (REVIDAL-GERDA) has collected many cases in the last few years. OBJECTIVES: To evaluate the clinical and sensitization profiles of patients diagnosed with ACD to CBB. METHODS: We performed a retrospective study of patients with contact dermatitis to CBB and positive tests to CBB and/or at least one of its components. All patients had to be tested with all components of CBB. RESULTS: A total of 102 patients (71 adults and 31 children) were included. The lesions were extensive in 63% of patients and 55% had delayed time to diagnosis. CBB patch tests were positive in 93.8% of cases. The allergen was identified in 97% of patients, mainly benzyl alcohol in adults (81.7%) and chlorhexidine digluconate in children (54.8%). About 32.4% of the patients were sensitized to several components. CONCLUSION: CBB is a cause of ACD at all ages. The components of the antiseptic should be tested. The sensitization profile seems to be different between adults and children.


Anti-Infective Agents, Local , Dermatitis, Allergic Contact , Adult , Allergens , Anti-Infective Agents, Local/adverse effects , Benzalkonium Compounds , Benzyl Alcohols , Child , Chlorhexidine/adverse effects , Chlorhexidine/analogs & derivatives , Chlorides , Dermatitis, Allergic Contact/diagnosis , Dermatitis, Allergic Contact/etiology , Humans , Patch Tests/adverse effects , Retrospective Studies
15.
Brain Sci ; 13(1)2022 Dec 30.
Article En | MEDLINE | ID: mdl-36672054

Subthreshold neural oscillations have been observed in several brain regions and can influence the timing of neural spikes. However, the spatial extent and function of these spontaneous oscillations remain unclear. To study the mechanisms underlying these oscillations, we use optogenetic stimulation to generate oscillating waves in the longitudinal hippocampal slice expressing optopatch proteins. We found that optogenetic stimulation can generate two types of neural activity: suprathreshold neural spikes and subthreshold oscillating waves. Both waves could propagate bidirectionally at similar speeds and go through a transection of the tissue. The propagating speed is independent of the oscillating frequency but increases with increasing amplitudes of the waves. The endogenous electric fields generated by oscillating waves are about 0.6 mV/mm along the dendrites and about 0.3 mV/mm along the cell layer. We also observed that these oscillating waves could interfere with each other. Optical stimulation applied simultaneously at each slice end generated a larger wave in the middle of the tissue (constructive interference) or destructive interference with laser signals in opposite phase. However, the suprathreshold neural spikes were annihilated when they collided. Finally, the waves were not affected by the NMDA blocker (APV) and still propagated in the presence of tetrodotoxin (TTX) but at a significantly lower amplitude. The role of these subthreshold waves in neural function is unknown, but the results show that at low amplitude, the subthreshold propagating waves lack a refractory period allowing a novel analog form of preprocessing of neural activity by interference independent of synaptic transmission.

16.
Elife ; 102021 09 07.
Article En | MEDLINE | ID: mdl-34490845

TDP-43 is a nuclear RNA-binding protein that forms neuronal cytoplasmic inclusions in two major neurodegenerative diseases, ALS and FTLD. While the self-assembly of TDP-43 by its structured N-terminal and intrinsically disordered C-terminal domains has been widely studied, the mechanism by which mRNA preserves TDP-43 solubility in the nucleus has not been addressed. Here, we demonstrate that tandem RNA recognition motifs of TDP-43 bind to long GU-repeats in a cooperative manner through intermolecular interactions. Moreover, using mutants whose cooperativity is impaired, we found that the cooperative binding of TDP-43 to mRNA may be critical to maintain the solubility of TDP-43 in the nucleus and the miscibility of TDP-43 in cytoplasmic stress granules. We anticipate that the knowledge of a higher order assembly of TDP-43 on mRNA may clarify its role in intron processing and provide a means of interfering with the cytoplasmic aggregation of TDP-43.


Cytoplasmic Granules , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , DNA-Binding Proteins/genetics , Escherichia coli , Humans , RNA Recognition Motif , RNA-Binding Proteins/genetics
17.
Nucleic Acids Res ; 49(11): 6569-6586, 2021 06 21.
Article En | MEDLINE | ID: mdl-34107018

Replicative helicases are essential proteins that unwind DNA in front of replication forks. Their loading depends on accessory proteins and in bacteria, DnaC and DnaI are well characterized loaders. However, most bacteria do not express either of these two proteins. Instead, they are proposed to rely on DciA, an ancestral protein unrelated to DnaC/I. While the DciA structure from Vibrio cholerae shares no homology with DnaC, it reveals similarities with DnaA and DnaX, two proteins involved during replication initiation. As other bacterial replicative helicases, VcDnaB adopts a toroid-shaped homo-hexameric structure, but with a slightly open dynamic conformation in the free state. We show that VcDnaB can load itself on DNA in vitro and that VcDciA stimulates this function, resulting in an increased DNA unwinding. VcDciA interacts with VcDnaB with a 3/6 stoichiometry and we show that a determinant residue, which discriminates DciA- and DnaC/I-helicases, is critical in vivo. Our work is the first step toward the understanding of the ancestral mode of loading of bacterial replicative helicases on DNA. It sheds light on the strategy employed by phage helicase loaders to hijack bacterial replicative helicases and may explain the recurrent domestication of dnaC/I through evolution in bacteria.


Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , DnaB Helicases/chemistry , Vibrio cholerae/enzymology , Bacterial Proteins/metabolism , DNA/metabolism , DNA-Binding Proteins/metabolism , DnaB Helicases/metabolism , Models, Molecular , Protein Conformation , Serine/chemistry
18.
Adv Sci (Weinh) ; 8(9): 2003630, 2021 05.
Article En | MEDLINE | ID: mdl-33977052

The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.


Adenylate Cyclase Toxin/metabolism , Calmodulin/metabolism , Eukaryotic Cells/metabolism , Protein Domains/physiology , Binding Sites/physiology , Protein Binding/physiology , Protein Transport/physiology
19.
Epilepsia ; 62(7): 1505-1517, 2021 07.
Article En | MEDLINE | ID: mdl-33979453

OBJECTIVE: One of the challenges in treating patients with drug-resistant epilepsy is that the mechanisms of seizures are unknown. Most current interventions are based on the assumption that epileptic activity recruits neurons and progresses by synaptic transmission. However, several experimental studies have shown that neural activity in rodent hippocampi can propagate independently of synaptic transmission. Recent studies suggest these waves are self-propagating by electric field (ephaptic) coupling. In this study, we tested the hypothesis that neural recruitment during seizures can occur by electric field coupling. METHODS: 4-Aminopyridine was used in both in vivo and in vitro preparation to trigger seizures or epileptiform activity. A transection was made in the in vivo hippocampus and in vitro hippocampal and cortical slices to study whether the induced seizure activity can recruit neurons across the gap. A computational model was built to test whether ephaptic coupling alone can account for neural recruitment across the transection. The model prediction was further validated by in vitro experiments. RESULTS: Experimental results show that electric fields generated by seizure-like activity in the hippocampus both in vitro and in vivo can recruit neurons locally and through a transection of the tissue. The computational model suggests that the neural recruitment across the transection is mediated by electric field coupling. With in vitro experiments, we show that a dielectric material can block the recruitment of epileptiform activity across a transection, and that the electric fields measured within the gap are similar to those predicted by model simulations. Furthermore, this nonsynaptic neural recruitment is also observed in cortical slices, suggesting that this effect is robust in brain tissue. SIGNIFICANCE: These results indicate that ephaptic coupling, a nonsynaptic mechanism, can underlie neural recruitment by a small electric field generated by seizure activity and could explain the low success rate of surgical transections in epilepsy patients.


Electromagnetic Fields , Epilepsy/physiopathology , Recruitment, Neurophysiological , 4-Aminopyridine , Animals , Cerebral Cortex/physiopathology , Computer Simulation , Convulsants , Epilepsy/diagnosis , Female , Hippocampus/physiopathology , Male , Mice, Transgenic , Models, Neurological , Predictive Value of Tests , Rats , Rats, Sprague-Dawley , Seizures/diagnosis , Seizures/physiopathology , Synaptic Transmission
20.
Brain Stimul ; 14(4): 771-779, 2021.
Article En | MEDLINE | ID: mdl-33989818

BACKGROUND: Transcranial direct current stimulation (tDCS) provides a noninvasive polarity-specific constant current to treat epilepsy, through a mechanism possibly involving excitability modulation and neural oscillation. OBJECTIVE: To determine whether EEG oscillations underlie the interictal spike changes after tDCS in rats with chronic spontaneous seizures. METHODS: Rats with kainic acid-induced spontaneous seizures were subjected to cathodal tDCS or sham stimulation for 5 consecutive days. Video-EEG recordings were collected immediately pre- and post-stimulation and for the subsequent 2 weeks following stimulation. The acute pre-post stimulation and subacute follow-up changes of interictal spikes and EEG oscillations in tDCS-treated rats were compared with sham. Ictal EEG with seizure behaviors, hippocampal brain-derived neurotrophic factor (BDNF) protein expression, and mossy fiber sprouting were compared between tDCS and sham rats. RESULTS: Interictal spike counts were reduced immediately following tDCS with augmented delta and diminished beta and gamma oscillations compared with sham. Cathodal tDCS also enhanced delta oscillations in normal rats. However, increased numbers of interictal spikes with a decrease of delta and theta oscillations were observed in tDCS-treated rats compared with sham during the following 2 weeks after stimulation. Resuming tDCS suppressed the increase of interictal spike activity. In tDCS rats, hippocampal BDNF protein expression was decreased while mossy fiber sprouting did not change compared with sham. CONCLUSIONS: The inverse relationship between the changes of delta oscillation and interictal spikes during tDCS on and off stimulation periods indicates that an enhanced endogenous delta oscillation underlies the tDCS inhibitory effect on epileptic excitability.


Transcranial Direct Current Stimulation , Animals , Electroencephalography , Kainic Acid , Physical Therapy Modalities , Rats , Seizures/therapy
...