Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
2.
Arch Virol ; 168(7): 175, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37296227

ABSTRACT

This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created.


Subject(s)
Viruses , Humans , Viruses/genetics , Committee Membership
3.
Viruses ; 15(2)2023 02 13.
Article in English | MEDLINE | ID: mdl-36851733

ABSTRACT

Profile hidden Markov models (HMMs) are a powerful way of modeling biological sequence diversity and constitute a very sensitive approach to detecting divergent sequences. Here, we report the development of protocols for the rational design of profile HMMs. These methods were implemented on TABAJARA, a program that can be used to either detect all biological sequences of a group or discriminate specific groups of sequences. By calculating position-specific information scores along a multiple sequence alignment, TABAJARA automatically identifies the most informative sequence motifs and uses them to construct profile HMMs. As a proof-of-principle, we applied TABAJARA to generate profile HMMs for the detection and classification of two viral groups presenting different evolutionary rates: bacteriophages of the Microviridae family and viruses of the Flavivirus genus. We obtained conserved models for the generic detection of any Microviridae or Flavivirus sequence, and profile HMMs that can specifically discriminate Microviridae subfamilies or Flavivirus species. In another application, we constructed Cas1 endonuclease-derived profile HMMs that can discriminate CRISPRs and casposons, two evolutionarily related transposable elements. We believe that the protocols described here, and implemented on TABAJARA, constitute a generic toolbox for generating profile HMMs for the highly sensitive and specific detection of sequence classes.


Subject(s)
Bacteriophages , Microviridae , Bacteriophages/genetics , Biodiversity , Biological Evolution , Clustered Regularly Interspaced Short Palindromic Repeats , Markov Chains
4.
Arch Virol ; 167(4): 1231-1234, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35043230

ABSTRACT

Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.


Subject(s)
Viruses, Unclassified , Viruses , DNA Viruses , Viruses/genetics , Writing
5.
6.
Microb Ecol ; 80(2): 249-265, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32060621

ABSTRACT

Turfs are among the major benthic components of reef systems worldwide. The nearly complete genome sequences, basic physiological characteristics, and phylogenomic reconstruction of two phycobiliprotein-rich filamentous cyanobacteria strains isolated from turf assemblages from the Abrolhos Bank (Brazil) are investigated. Both Adonisia turfae CCMR0081T (= CBAS 745T) and CCMR0082 contain approximately 8 Mbp in genome size and experiments identified that both strains exhibit chromatic acclimation. Whereas CCMR0081T exhibits chromatic acclimation type 3 (CA3) regulating both phycocyanin (PC) and phycoerythrin (PE), CCMR0082 strain exhibits chromatic acclimation type 2 (CA2), in correspondence with genes encoding specific photosensors and regulators for PC and PE. Furthermore, a high number and diversity of secondary metabolite synthesis gene clusters were identified in both genomes, and they were able to grow at high temperatures (28 °C, with scant growth at 30 °C). These characteristics provide insights into their widespread distribution in reef systems.


Subject(s)
Cyanobacteria/physiology , Genome, Bacterial/physiology , Atlantic Ocean , Brazil , Coral Reefs , Cyanobacteria/genetics , Phylogeny
7.
Front Genet ; 10: 1344, 2019.
Article in English | MEDLINE | ID: mdl-32010196

ABSTRACT

Studies in microbiology have long been mostly restricted to small spatial scales. However, recent technological advances, such as new sequencing methodologies, have ushered an era of large-scale sequencing of environmental DNA data from multiple biomes worldwide. These global datasets can now be used to explore long standing questions of microbial ecology. New methodological approaches and concepts are being developed to study such large-scale patterns in microbial communities, resulting in new perspectives that represent a significant advances for both microbiology and macroecology. Here, we identify and review important conceptual, computational, and methodological challenges and opportunities in microbial macroecology. Specifically, we discuss the challenges of handling and analyzing large amounts of microbiome data to understand taxa distribution and co-occurrence patterns. We also discuss approaches for modeling microbial communities based on environmental data, including information on biological interactions to make full use of available Big Data. Finally, we summarize the methods presented in a general approach aimed to aid microbiologists in addressing fundamental questions in microbial macroecology, including classical propositions (such as "everything is everywhere, but the environment selects") as well as applied ecological problems, such as those posed by human induced global environmental changes.

8.
PLoS One ; 13(11): e0200437, 2018.
Article in English | MEDLINE | ID: mdl-30427852

ABSTRACT

Teredinidae are a family of highly adapted wood-feeding and wood-boring bivalves, commonly known as shipworms, whose evolution is linked to the acquisition of cellulolytic gammaproteobacterial symbionts harbored in bacteriocytes within the gills. In the present work we applied metagenomics to characterize microbiomes of the gills and digestive tract of Neoteredo reynei, a mangrove-adapted shipworm species found over a large range of the Brazilian coast. Comparative metagenomics grouped the gill symbiont community of different N. reynei specimens, indicating closely related bacterial types are shared. Similarly, the intestine and digestive gland communities were related, yet were more diverse than and showed no overlap with the gill community. Annotation of assembled metagenomic contigs revealed that the gill symbiotic community of N. reynei encodes a plethora of plant cell wall polysaccharides degrading glycoside hydrolase encoding genes, and Biosynthetic Gene Clusters (BGCs). In contrast, the digestive tract microbiomes seem to play little role in wood digestion and secondary metabolites biosynthesis. Metagenome binning recovered the nearly complete genome sequences of two symbiotic Teredinibacter strains from the gills, a representative of Teredinibacter turnerae "clade I" strain, and a yet to be cultivated Teredinibacter sp. type. These Teredinibacter genomes, as well as un-binned gill-derived gammaproteobacteria contigs, also include an endo-ß-1,4-xylanase/acetylxylan esterase multi-catalytic carbohydrate-active enzyme, and a trans-acyltransferase polyketide synthase (trans-AT PKS) gene cluster with the gene cassette for generating ß-branching on complex polyketides. Finally, we use multivariate analyses to show that the secondary metabolome from the genomes of Teredinibacter representatives, including genomes binned from N. reynei gills' metagenomes presented herein, stands out within the Cellvibrionaceae family by size, and enrichments for polyketide, nonribosomal peptide and hybrid BGCs. Results presented here add to the growing characterization of shipworm symbiotic microbiomes and indicate that the N. reynei gill gammaproteobacterial community is a prolific source of biotechnologically relevant enzymes for wood-digestion and bioactive compounds production.


Subject(s)
Bivalvia/microbiology , Gammaproteobacteria/enzymology , Gammaproteobacteria/physiology , Glycoside Hydrolases/metabolism , Polysaccharides/metabolism , Symbiosis , Animals , Bivalvia/physiology , Gammaproteobacteria/genetics , Genomics , Gills/microbiology , Glycoside Hydrolases/genetics , Metagenome , Microbiota , Multigene Family , Phylogeny , Secondary Metabolism , Wood/metabolism , Wood/parasitology
9.
Front Microbiol ; 8: 2132, 2017.
Article in English | MEDLINE | ID: mdl-29184540

ABSTRACT

Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches.

10.
Nat Commun ; 8: 15955, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28677677

ABSTRACT

Marine viruses are key drivers of host diversity, population dynamics and biogeochemical cycling and contribute to the daily flux of billions of tons of organic matter. Despite recent advancements in metagenomics, much of their biodiversity remains uncharacterized. Here we report a data set of 27,346 marine virome contigs that includes 44 complete genomes. These outnumber all currently known phage genomes in marine habitats and include members of previously uncharacterized lineages. We designed a new method for host prediction based on co-occurrence associations that reveals these viruses infect dominant members of the marine microbiome such as Prochlorococcus and Pelagibacter. A negative association between host abundance and the virus-to-host ratio supports the recently proposed Piggyback-the-Winner model of reduced phage lysis at higher host densities. An analysis of the abundance patterns of viruses throughout the oceans revealed how marine viral communities adapt to various seasonal, temperature and photic regimes according to targeted hosts and the diversity of auxiliary metabolic genes.

11.
Bacteriophage ; 4(4): e979664, 2014.
Article in English | MEDLINE | ID: mdl-26458273

ABSTRACT

Sequencing DNA or RNA directly from the environment often results in many sequencing reads that have no homologs in the database. These are referred to as "unknowns," and reflect the vast unexplored microbial sequence space of our biosphere, also known as "biological dark matter." However, unknowns also exist because metagenomic datasets are not optimally mined. There is a pressure on researchers to publish and move on, and the unknown sequences are often left for what they are, and conclusions drawn based on reads with annotated homologs. This can cause abundant and widespread genomes to be overlooked, such as the recently discovered human gut bacteriophage crAssphage. The unknowns may be enriched for bacteriophage sequences, the most abundant and genetically diverse component of the biosphere and of sequence space. However, it remains an open question, what is the actual size of biological sequence space? The de novo assembly of shotgun metagenomes is the most powerful tool to address this question.

12.
Environ Microbiol ; 14(11): 3043-65, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23039259

ABSTRACT

Oxygen minimum zones (OMZs) are oceanographic features that affect ocean productivity and biodiversity, and contribute to ocean nitrogen loss and greenhouse gas emissions. Here we describe the viral communities associated with the Eastern Tropical South Pacific (ETSP) OMZ off Iquique, Chile for the first time through abundance estimates and viral metagenomic analysis. The viral-to-microbial ratio (VMR) in the ETSP OMZ fluctuated in the oxycline and declined in the anoxic core to below one on several occasions. The number of viral genotypes (unique genomes as defined by sequence assembly) ranged from 2040 at the surface to 98 in the oxycline, which is the lowest viral diversity recorded to date in the ocean. Within the ETSP OMZ viromes, only 4.95% of genotypes were shared between surface and anoxic core viromes using reciprocal BLASTn sequence comparison. ETSP virome comparison with surface marine viromes (Sargasso Sea, Gulf of Mexico, Kingman Reef, Chesapeake Bay) revealed a dissimilarity of ETSP OMZ viruses to those from other oceanic regions. From the 1.4 million non-redundant DNA sequences sampled within the altered oxygen conditions of the ETSP OMZ, more than 97.8% were novel. Of the average 3.2% of sequences that showed similarity to the SEED non-redundant database, phage sequences dominated the surface viromes, eukaryotic virus sequences dominated the oxycline viromes, and phage sequences dominated the anoxic core viromes. The viral community of the ETSP OMZ was characterized by fluctuations in abundance, taxa and diversity across the oxygen gradient. The ecological significance of these changes was difficult to predict; however, it appears that the reduction in oxygen coincides with an increased shedding of eukaryotic viruses in the oxycline, and a shift to unique viral genotypes in the anoxic core.


Subject(s)
Biodiversity , Oxygen/metabolism , Seawater/virology , Virus Physiological Phenomena , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Chile , Genotype , Nitrogen/metabolism , Oceans and Seas , Oxidation-Reduction , Phylogeny , Sulfur/metabolism , Viruses/genetics
13.
PLoS One ; 7(7): e39905, 2012.
Article in English | MEDLINE | ID: mdl-22768320

ABSTRACT

The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome.


Subject(s)
Bacteria/genetics , DNA, Bacterial/genetics , Metagenome , Porifera/microbiology , Aerobiosis/genetics , Anaerobiosis/genetics , Animals , Bacteria/classification , Species Specificity
14.
PLoS One ; 7(5): e37283, 2012.
Article in English | MEDLINE | ID: mdl-22662140

ABSTRACT

The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics.


Subject(s)
Cholera/epidemiology , Epidemics , Genome, Bacterial , Sucrose/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Bacteriophages/classification , Bacteriophages/genetics , Base Composition , DNA, Viral , Interspersed Repetitive Sequences , Latin America/epidemiology , Mutation , Phenotype , Phylogeny , Vibrio cholerae/virology
15.
J Bacteriol ; 194(11): 3018, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22582376

ABSTRACT

We report on the genome sequences of Lactobacillus vini type strain LMG 23202(T) (DSM 20605) (isolated from fermenting grape musts in Spain) and the industrial strain L. vini JP7.8.9 (isolated from a bioethanol plant in northeast Brazil). All contigs were assembled using gsAssembler, and genes were predicted and annotated using Rapid Annotation using Subsystem Technology (RAST). The identified genome sequence of LMG 23202(T) had 2.201.333 bp, 37.6% G+C, and 1,833 genes, whereas the identified genome sequence of JP7.8.9 had 2.301.037 bp, 37.8% G+C, and 1,739 genes. The gene repertoire of the species L. vini offers promising opportunities for biotechnological applications.


Subject(s)
Ethanol/metabolism , Genome, Bacterial , Lactobacillus/genetics , Lactobacillus/isolation & purification , Vitis/microbiology , Base Sequence , Fermentation , Lactobacillus/classification , Lactobacillus/metabolism , Molecular Sequence Data , Vitis/metabolism
16.
J Bacteriol ; 193(20): 5877-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21952545

ABSTRACT

Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis revealed that it contains Vibrio pathogenicity island 2 and a set of genes related to pathogenesis and fitness, such as the type VI secretion system, present in choleragenic V. cholerae strains.


Subject(s)
Cholera/microbiology , Genome, Bacterial , Vibrio cholerae/genetics , Bacterial Proteins/genetics , Base Sequence , Humans , Molecular Sequence Data , Vibrio cholerae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL