Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 6480, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29691416

ABSTRACT

Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/genetics , MicroRNAs/genetics , Animals , Gene Expression/genetics , Gene Expression Profiling/methods , Hemorrhagic Fever, Ebola/virology , Humans , Macaca fascicularis/genetics , Macaca mulatta/genetics , Mice , RNA, Messenger/metabolism , Virus Replication/genetics
2.
Sci Rep ; 6: 24496, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27098369

ABSTRACT

Early detection of Ebola virus (EBOV) infection is essential to halting transmission and adjudicating appropriate treatment. However, current methods rely on viral identification, and this approach can misdiagnose presymptomatic and asymptomatic individuals. In contrast, disease-driven alterations in the host transcriptome can be exploited for pathogen-specific diagnostic biomarkers. Here, we present for the first time EBOV-induced changes in circulating miRNA populations of nonhuman primates (NHPs) and humans. We retrospectively profiled longitudinally-collected plasma samples from rhesus macaques challenged via intramuscular and aerosol routes and found 36 miRNAs differentially present in both groups. Comparison of miRNA abundances to viral loads uncovered 15 highly correlated miRNAs common to EBOV-infected NHPs and humans. As proof of principle, we developed an eight-miRNA classifier that correctly categorized infection status in 64/74 (86%) human and NHP samples. The classifier identified acute infections in 27/29 (93.1%) samples and in 6/12 (50%) presymptomatic NHPs. These findings showed applicability of NHP-derived miRNAs to a human cohort, and with additional research the resulting classifiers could impact the current capability to diagnose presymptomatic and asymptomatic EBOV infections.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , Adolescent , Adult , Animals , Biomarkers , Cluster Analysis , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/diagnosis , Humans , Macaca mulatta , Male , MicroRNAs/blood , Middle Aged , Viral Load , Young Adult
3.
BMC Genomics ; 16: 95, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25765146

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) represent new and potentially informative diagnostic targets for disease detection and prognosis. However, little work exists documenting the effect of TRIzol, a common viral inactivation and nucleic acid extraction reagent, on miRNA purification. Here, we developed an optimized protocol for miRNA extraction from plasma samples by evaluating five different RNA extraction kits, TRIzol phase separation, purification additives, and initial plasma sample volume. This method was then used for downstream profiling of plasma miRNAs found in archived samples from one nonhuman primate (NHP) experimentally challenged with Ebola virus by the aerosol route. RESULTS: Comparison of real-time RT-PCR results for spiked-in and endogenous miRNA sequences determined extraction efficiencies from five different RNA purification kits. These experiments showed that 50 µL plasma processed using the QIAGEN miRNeasy Mini Kit with 5 µg of glycogen as a co-precipitant yielded the highest recovery of endogenous miRNAs. Using this optimized protocol, miRNAs from archived plasma samples of one rhesus macaque challenged with aerosolized Ebola virus was profiled using a targeted real-time PCR array. A total of 519 of the 752 unique miRNAs assayed were present in the plasma samples at day 0 and day 7 (time of death) post-exposure. Statistical analyses revealed 25 sequences significantly up- or down-regulated between day 0 and day 7 post infection, validating the utility of the extraction method for plasma miRNA profiling. CONCLUSIONS: This study contributes to the knowledgebase of circulating miRNA extraction methods and expands on the potential applications of cell-free miRNA profiling for diagnostics and pathogenesis studies. Specifically, we optimized an extraction protocol for miRNAs from TRIzol-inactivated plasma samples that can be used for highly pathogenic viruses.


Subject(s)
Hemorrhagic Fever, Ebola/genetics , MicroRNAs/genetics , MicroRNAs/isolation & purification , Animals , Ebolavirus/genetics , Guanidines/pharmacology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/virology , Macaca mulatta/blood , Macaca mulatta/genetics , Macaca mulatta/virology , MicroRNAs/blood , Phenols/pharmacology
4.
Biosens Bioelectron ; 52: 433-7, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-22749775

ABSTRACT

Rapid and specific on-site detection of disease-causing or toxin-producing organisms is essential to public health and safety. Many molecular recognition methods target ribosomal RNA sequences due to their specificity and abundance in the cell. In this work RNA targets were identified and quantified using a colorimetric bioassay. Peptide nucleic acid (PNA) probes were used to capture RNA targets, and a micrococcal nuclease digestion was performed to remove all non-target nucleic acids, including single base mismatches flanked by adenines or uracils. Perfectly-matched PNA-RNA hybrids remained intact and were detected using the symmetrical cyanine dye 3,3'-diethylthiadicarbocyanine iodide (DiSC2(5)). Assay applicability to complex samples was demonstrated using mixtures containing RNA sequences from two related, harmful algal bloom-causing Alexandrium species. Target RNA was detected even in mixtures with mismatched sequences in excess of the perfect match. The fieldability of the assay was tested with a portable two-wavelength colorimeter developed to quantify the dye-indicated hybridization signal. The colorimeter sensing performance was shown to be comparable to a laboratory spectrophotometer. This quick, inexpensive and robust system has the potential to replace laborious identification schemes in field environments.


Subject(s)
Biosensing Techniques/methods , Harmful Algal Bloom , Peptide Nucleic Acids/chemistry , RNA, Ribosomal/isolation & purification , Biological Assay , Carbocyanines/chemistry , Colorimetry , Nucleic Acid Hybridization , RNA, Ribosomal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...