Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Biophys Chem ; 310: 107251, 2024 Jul.
Article En | MEDLINE | ID: mdl-38678820

The cationic antimicrobial peptides PGLa and magainin 2 (Mag2) are known for their antimicrobial activity and synergistic enhancement in antimicrobial and membrane leakage assays. Further use of peptides in combinatory therapy requires knowledge of the mechanisms of action of both individual peptides and their mixtures. Here, electron paramagnetic resonance (EPR), double electron-electron resonance (DEER, also known as PELDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies were applied to study self-assembly and localization of spin-labeled PGLa and Mag2 in POPE/POPG membranes with a wide range of peptide/lipid ratios (P/L) from ∼1/1500 to 1/50. EPR and DEER data showed that both peptides tend to organize in clusters, which occurs already at the lowest peptide/lipid molar ratio of 1/1500 (0.067 mol%). For individual peptides, these clusters are quite dense with intermolecular distances of the order of ∼2 nm. In the presence of a synergistic peptide partner, these homo-clusters are transformed into lipid-diluted hetero-clusters. These clusters are characterized by a local surface density that is several times higher than expected from a random distribution. ESEEM data indicate a slightly different insertion depth of peptides in hetero-clusters when compared to homo-clusters.


Antimicrobial Cationic Peptides , Lipid Bilayers , Magainins , Spin Labels , Magainins/chemistry , Magainins/pharmacology , Lipid Bilayers/chemistry , Electron Spin Resonance Spectroscopy , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
2.
J Phys Chem B ; 128(15): 3652-3661, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38576273

Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.


Ibuprofen , Lipid Bilayers , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Cholesterol/chemistry , Membrane Microdomains , Phosphatidylcholines/chemistry
3.
Phys Chem Chem Phys ; 25(38): 26219-26224, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37740340

Galvinoxyl (Gx) is a stable free radical used as a dopant in active layers of organic solar cells. Here, the nanoscale arrangement of Gx molecules in a composite of the PCDTBT polymer and modified C60 fullerene, PCBM, was studied using a two-pulse electron spin echo (ESE) technique. The results show that the Gx molecules assemble into clusters, which can be described by the model of 8 molecules on the surface of a sphere with a radius of 2.0 nm. Such a structure can arise due to the octahedral packing of 6 PCBM molecules surrounded by 8 Gx molecules. ESE decays also indicate that these clusters repel each other, forming a quasi-regular nanostructure in the matrix. The Gx concentration of 2 wt% at which clusters appear correlates with the literature data on the Gx-induced enhancement of photocurrent, which provides structural insight into the possible molecular mechanism of this enhancement.

4.
Phys Chem Chem Phys ; 25(37): 25720-25727, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37721717

Membranes based on graphite oxide (GO) are promising materials for the separation of polar liquids and gases. Understanding the properties of solvents immersed in GO is important for the development of various technological applications. Here, the molecular motions of the TEMPO nitroxide spin probe in acetonitrile intercalated into the GO inter-plane space were studied using electron paramagnetic resonance (EPR), including its pulsed version, and electron spin echo (ESE). For a sample containing 75% acetonitrile relative to equilibrium sorption at room temperature, ESE-detected stochastic librations were observed for TEMPO molecules above 135 K. Since these librations are an inherent property of molecular glasses, this fact indicates that intercalated acetonitrile forms a two-dimensional glass state. Above 225 K, an acceleration of stochastic librations was observed, indicating the manifestation of a glass-like dynamical cross-over. Continuous wave (CW) EPR spectra of TEMPO showed the absence of overall tumbling motions in the entire investigated temperature range of up to 340 K, indicating that the intercalated acetonitrile does not behave as a bulk liquid (the melting point of acetonitrile is 229 K). Dynamical librations of TEMPO molecules detected by CW EPR were found to accelerate above 240 K.

5.
Molecules ; 28(16)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37630243

Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) from the group of phenylacetic acid derivatives, which has analgesic, anti-inflammatory and antipyretic properties. The interaction of non-steroidal anti-inflammatory drugs with cell membranes can affect their physicochemical properties, which, in turn, can cause a number of side effects in the use of these drugs. Electron paramagnetic resonance (EPR) spectroscopy could be used to study the interaction of diclofenac with a membrane, if its spin-labeled analogs existed. This paper describes the synthesis of spin-labeled diclofenac (diclofenac-SL), which consists of a simple sequence of transformations such as iodination, esterification, Sonogashira cross-coupling, oxidation and saponification. EPR spectra showed that diclofenac-SL binds to a lipid membrane composed of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 2H electron spin echo spectroscopy (ESEEM) was used to determine the position of the diclofenac-SL relative to the membrane surface. It was established that its average depth of immersion corresponds to the 5th position of the carbon atom in the lipid chain.


Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Spin Labels , Membranes , Glycerylphosphorylcholine
6.
Biochim Biophys Acta Biomembr ; 1865(8): 184215, 2023 12.
Article En | MEDLINE | ID: mdl-37633627

Non-steroidal anti-inflammatory drugs (NSAIDs) have antipyretic, anti-inflammatory and analgesic effects, and can be used in the treatment of various diseases. These drugs have also a number of side effects, which may be related to their interaction with lipid membranes. In this study, we use the spin-labeled NSAID ibuprofen (ibuprofen-SL) as a relaxation enhancer to study its interaction with model lipid membranes employing liquid-state 1H NMR at 500 MHz. The high magnetic moment of unpaired electron in the spin label made it possible to reduce the concentration of the studied drug in the membrane to tenths of a mole percent. As model membranes, unilamellar POPC liposomes and bicelles consisting of a 2:1 mixture of DHPC:DMPC or DHPC:POPC lipids were used. An increase in the rate of proton spin-lattice relaxation, T1-1, selectively detected for protons at different positions in the lipid molecule, showed that ibuprofen-SL is localized in the hydrophobic part of the lipid bilayer. As the concentration of ibuprofen-SL increases to 0.5 mol%, the distribution of positions of ibuprofen-SL across the bilayer becomes wider. In the presence of 20 mol% of cholesterol, ibuprofen-SL is displaced from the core of the membrane to a region closer to the head group of the bilayer. This displacement was also confirmed by the NMR NOESY experiment conducted with unlabeled ibuprofen. For bilayers containing unsaturated POPC lipids, the distribution of ibuprofen positions across the bilayer becomes narrower compared to the presence of saturated DMPC lipids.


Dimyristoylphosphatidylcholine , Ibuprofen , Anti-Inflammatory Agents, Non-Steroidal , Electrons
7.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article En | MEDLINE | ID: mdl-37511233

Apurinic/apyrimidinic endonuclease 1 (APE1) is one of the most important enzymes in base excision repair. Studies on this enzyme have been conducted for a long time, but some aspects of its activity remain poorly understood. One such question concerns the mechanism of damaged-nucleotide recognition by the enzyme, and the answer could shed light on substrate specificity control in all enzymes of this class. In the present study, by pulsed electron-electron double resonance (DEER, also known as PELDOR) spectroscopy and pre-steady-state kinetic analysis along with wild-type (WT) APE1 from Danio rerio (zAPE1) or three mutants (carrying substitution N253G, A254G, or E260A), we aimed to elucidate the molecular events in the process of damage recognition. The data revealed that the zAPE1 mutant E260A has much higher activity toward DNA substrates containing 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), or 1,N6-ethenoadenosine (εA). Examination of conformational changes in DNA clearly revealed multistep DNA rearrangements during the formation of the catalytic complex. These structural rearrangements of DNA are directly associated with the capacity of damaged DNA for enzyme-induced bending and unwinding, which are required for eversion of the damaged nucleotide from the DNA duplex and for its placement into the active site of the enzyme. Taken together, the results experimentally prove the factors that control substrate specificity of the AP endonuclease zAPE1.


Amino Acids , DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Amino Acids/genetics , Substrate Specificity , Kinetics , Electron Spin Resonance Spectroscopy , DNA Damage , DNA Repair , DNA/chemistry , Endonucleases/metabolism , Nucleotides , Deoxyuridine
8.
Membranes (Basel) ; 12(11)2022 Oct 30.
Article En | MEDLINE | ID: mdl-36363632

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) with analgesic and antipyretic effects. Understanding the molecular mechanisms of drug interaction with cell membranes is important to improving drug delivery, uptake by cells, possible side effects, etc. Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) provides information on the nanoscale spatial arrangement of spin-labeled molecules. Here, DEER was applied to study (mono-)spin-labeled ibuprofen (ibuprofen-SL) in a bilayer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC). The results obtained show that the ibuprofen-SL molecules are located within a plane in each bilayer leaflet. At their low molar concentration in the bilayer χ, the found surface concentration of ibuprofen-SL is two times higher than χ, which can be explained by alternative assembling in the two leaflets of the bilayer. When χ > 2 mol%, these assemblies merge. The findings shed new light on the nanoscale spatial arrangement of ibuprofen in biological membranes.

9.
Biochim Biophys Acta Gen Subj ; 1866(11): 130216, 2022 11.
Article En | MEDLINE | ID: mdl-35905924

Apurinic/apyrimidinic (AP) endonuclease Nfo from Escherichia coli recognises AP sites in DNA and catalyses phosphodiester bond cleavage on the 5' side of AP sites and some damaged or undamaged nucleotides. Here, the mechanism of target nucleotide recognition by Nfo was analysed by pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer detection of DNA conformational changes during DNA binding. The efficiency of endonucleolytic cleavage of a target nucleotide in model DNA substrates was ranked as (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran [F-site] > 5,6-dihydro-2'-deoxyuridine > α-anomer of 2'-deoxyadenosine >2'-deoxyuridine > undamaged DNA. Real-time conformational changes of DNA during interaction with Nfo revealed an increase of distances between duplex ends during the formation of the initial enzyme-substrate complex. The use of rigid-linker spin-labelled DNA duplexes in DEER measurements indicated that double-helix bending and unwinding by the target nucleotide itself is one of the key factors responsible for indiscriminate recognition of a target nucleotide by Nfo. The results for the first time show that AP endonucleases from different structural families utilise a common strategy of damage recognition, which globally may be integrated with the mechanism of searching for specific sites in DNA by other enzymes.


DNA-(Apurinic or Apyrimidinic Site) Lyase , Escherichia coli , DNA , DNA Damage , DNA Repair , Deoxyuridine , Electron Spin Resonance Spectroscopy , Endonucleases , Humans , Kinetics , Nucleotides
10.
Molecules ; 27(13)2022 Jun 27.
Article En | MEDLINE | ID: mdl-35807376

Ibuprofen is a non-steroidal anti-inflammatory drug possessing analgesic and antipyretic activity. Electron paramagnetic resonance (EPR) spectroscopy could be applied to study its interaction with biological membranes and proteins if its spin-labeled analogs were synthesized. Here, a simple sequence of ibuprofen transformations-nitration, esterification, reduction, Sandmeyer reaction, Sonogashira cross-coupling, oxidation and saponification-was developed to attain this goal. The synthesis resulted in spin-labeled ibuprofen (ibuprofen-SL) in which the spin label TEMPOL is attached to the benzene ring. EPR spectra confirmed interaction of ibuprofen-SL with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Using 2H electron spin echo envelope modulation (ESEEM) spectroscopy, ibuprofen-SL was found to be embedded into the hydrophobic bilayer interior.


Ibuprofen , Lipid Bilayers , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Membranes , Spin Labels
11.
Biochim Biophys Acta Biomembr ; 1864(9): 183978, 2022 09 01.
Article En | MEDLINE | ID: mdl-35659865

Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api8), able to selectively kill cancer cells, and Tri(Leu4), which is completely nontoxic. In our attempt to determine the molecular basis of their different biological activity, we investigate peptide impact on the lateral organization of lipid membranes, peptide localization and oligomerization, in the zwitter-ionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane We show that, despite their divergent bioactivity, both peptide analogs (i) are membrane-bound, (ii) display a weak tendency to oligomerization, and (iii) do not induce significant lipid rearrangement. Conversely, literature data show that the parent peptide trichogin, which is cytotoxic without any selectivity, is strongly prone to dimerization and affects the reorganization of POPC membranes. Its dimers are involved in the rotation around the peptide helix, as observed at cryogenic temperatures in the millisecond timescale. Since this latter behavior is not observed for the inactive Tri(Leu4), we propose that for short-length peptides as trichogin oligomerization and molecular motions are crucial for bioactivity, and membrane binding alone is not enough to predict or explain it. We envisage that small changes in the peptide sequence that affect only their ability to oligomerize, or their molecular motions inside the membrane, can tune the peptide activity on membranes of different compositions.


Anti-Bacterial Agents , Lipid Bilayers , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Membranes/metabolism , Spin Labels
12.
Phys Chem Chem Phys ; 24(10): 5974-5981, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35199802

Deep eutectic solvents (DESs) are eutectic mixtures of hydrogen bond acceptors and hydrogen bond donors which melt at much lower temperatures than the individual components. DESs are attracting growing interest because of a large variety of possible technological applications. Here, supercooled DESs consisting of choline chloride-urea (1 : 2) (reline) and of choline chloride-thiourea (1 : 2) (ChCl-thiourea), with introduced nitroxide spin probe tempone, were studied by electron paramagnetic resonance (EPR) spectroscopy. Conventional continuous wave (CW) EPR spectra showed the coexistence of solid and liquid microphases, with microviscosity of ∼ 10 P in the latter case. CW EPR spectra taken at different temperatures for ChCl-thiourea showed isosbestic points, which indicates that two phases are separated by sharp boundaries; for reline these points are rather diffuse, which in turn implies diffuse boundaries. Stochastic molecular librations detected by pulsed EPR possess the ability for elucidating nanoscale features of molecular packing; the data obtained showed a drastic difference for the onset of these motions for ChCl-thiourea and for reline, which was interpreted as evidence that the rigidity of molecular packing for ChCl-thiourea is stronger than that for reline. The temperature dependence of stochastic molecular librations for reline was found to be similar to that known for lipid bilayers and globular proteins, which indicates the proximity of the characteristics of molecular packing in these molecular systems.


Choline , Thiourea , Choline/chemistry , Deep Eutectic Solvents , Hydrogen Bonding , Solvents/chemistry
13.
ACS Omega ; 7(6): 5154-5165, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-35187331

Electron paramagnetic resonance spectroscopy, particularly its pulse technique double electron-electron resonance (DEER) (also termed PELDOR), is rapidly becoming an extremely useful tool for the experimental determination of side chain-to-side chain distances between free radicals in molecules fundamental for life, such as polypeptides. Among appropriate probes, the most popular are undoubtedly nitroxide electron spin labels. In this context, suitable biosynthetically derived, helical regions of proteins, along with synthetic peptides with amphiphilic properties and antibacterial activities, are the most extensively investigated compounds. A strict requirement for a precise distance measurement has been identified in a minimal dynamic flexibility of the two nitroxide-bearing α-amino acid side chains. To this end, in this study, we have experimentally compared in detail the side-chain mobility properties of the two currently most widely utilized residues, namely, Cys(MTSL) and 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). In particular, two double-labeled, chemically synthesized 20-mer peptide molecules have been adopted as appropriate templates for our investigation on the determination of the model intramolecular separations. These double-Cys(MTSL) and double-TOAC compounds are both analogues of the almost completely rigid backbone peptide ruler which we have envisaged and 3D structurally analyzed as our original, unlabeled compound. Here, we have clearly found that the TOAC side-chain labels are largely more 3D structurally restricted than the MTSL labels. From this result, we conclude that the TOAC residue offers more precise information than the Cys(MTSL) residue on the side chain-to-side chain distance distribution in synthetically accessible peptide molecules.

14.
Langmuir ; 37(47): 13909-13916, 2021 11 30.
Article En | MEDLINE | ID: mdl-34787421

Free fatty acids play various important roles in biological membranes. Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) of spin-labeled biomolecules is capable of studying magnetic dipole-dipole (d-d) interactions between spin labels at the nanoscale range of distances. Here, DEER is applied to study intermolecular d-d interactions between doxyl-spin-labeled stearic acids (DSA) in gel-phase phospholipid bilayers composed either of an equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine or of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. DEER data obtained for different DSA concentrations showed that DSA molecules at their concentration in the bilayer χ larger than 0.5 mol % are assembled into lateral lipid-mediated clusters, with a characteristic intermolecular distance of 2 nm. Some evidences were obtained indicating that clusters may consist of "subclusters", alternatively appearing in two opposite leaflets. Conventional electron paramagnetic resonance (EPR) spectra for the gel-phase bilayers showed that for χ larger than 2 mol % the molecules in the clusters stick together, forming oligomers. Room-temperature EPR spectra for the liquid-crystalline phase were found to change noticeably for χ larger than 0.5 mol %, which may indicate the clustering in a liquid-crystalline phase similar to that observed by DEER in the gel phase.


Lipid Bilayers , Phospholipids , Cluster Analysis , Electron Spin Resonance Spectroscopy , Electrons , Phosphatidylcholines , Spin Labels , Stearic Acids
15.
Molecules ; 26(19)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34641515

Intrinsically disordered proteins (IDPs) are proteins that possess large unstructured regions. Their importance is increasingly recognized in biology but their characterization remains a challenging task. We employed field swept Electron Spin Echoes in pulsed EPR to investigate low-temperature stochastic molecular librations in a spin-labeled IDP, casein (the main protein of milk). For comparison, a spin-labeled globular protein, hen egg white lysozyme, is also investigated. For casein these motions were found to start at 100 K while for lysozyme only above 130 K, which was ascribed to a denser and more ordered molecular packing in lysozyme. However, above 120 K, the motions in casein were found to depend on temperature much slower than those in lysozyme. This abrupt change in casein was assigned to an ordering transition in which peptide residues rearrange making the molecular packing more rigid and/or more cohesive. The found features of molecular motions in these two proteins turned out to be very similar to those known for gel-phase lipid bilayers composed of conformationally ordered and conformationally disordered lipids. This analogy with a simpler molecular system may appear helpful for elucidation properties of molecular packing in IDPs.


Caseins/chemistry , Intrinsically Disordered Proteins/chemistry , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy , Muramidase/chemistry , Protein Conformation , Spin Labels , Temperature
16.
J Phys Chem B ; 125(33): 9557-9563, 2021 08 26.
Article En | MEDLINE | ID: mdl-34387998

Plasma membranes are assumed to be highly compartmentalized, which is believed to be important for the membrane protein functionality. The liquid ordered-disordered phase segregation in the membranes results in nanoscale liquid-ordered assemblies-lipid rafts. Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) is sensitive to spin-spin dipolar interactions between spin labels at the nanoscale range of distances. Here, DEER is applied to spin-labeled cholestane, 3ß-doxyl-5α-cholestane (DChl), diluted in bilayers composed of an equimolar mixture of dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC) phospholipids, with cholesterol (Chol) added. The DEER data allowed us to detect clustering of the DChl molecules. Their lateral distribution in the clusters in the absence of Chol was found to be random, while in the presence of Chol it became quasi-regular. DEER time traces are fairly well simulated within a simple square superlattice model. For the 20 mol % Chol content, for which at physiological temperatures, the lipid rafts are formed, the found superlattice parameter was 3.7 nm. Assuming that lipid rafts are captioned upon shock freezing at the temperature of investigation (80 K), the found regularity of DChl lateral distribution was interpreted by raft substructuring, with the DChl molecules embedded between the substructures.


Cholestanes , Lipid Bilayers , Electron Spin Resonance Spectroscopy , Electrons , Membrane Microdomains , Phosphatidylcholines , Spin Labels
17.
Biochim Biophys Acta Biomembr ; 1863(9): 183585, 2021 09 01.
Article En | MEDLINE | ID: mdl-33640429

The medium-length peptide Tylopeptin B possesses activity against Gram-positive bacteria. It binds to bacterial membranes altering their mechanical properties and increasing their permeability. This action is commonly related with peptide self-assembling, resulting in the formation of membrane channels. Here, pulsed double electron-electron resonance (DEER) data for spin-labeled Tylopeptin B in palmitoyl-oleoyl-glycero-phosphocholine (POPC) model membrane reveal that peptide self-assembling starts at concentration as low as 0.1 mol%; above 0.2 mol% it attains a saturation-like dependence with a mean number of peptides in the cluster = 3.3. Using the electron spin echo envelope modulation (ESEEM) technique, Tylopeptin B molecules are found to possess a planar orientation in the membrane. In the peptide concentration range between 0.1 and 0.2 mol%, DEER data show that the peptide clusters have tendency of mutual repulsion, with a circle of inaccessibility of radius around 20 nm. It may be proposed that within this radius the peptides destabilize the membrane, providing so the peptide antimicrobial activity. Exploiting spin-labeled stearic acids as a model for free fatty acids (FFA), we found that at concentrations of 0.1-0.2 mol% the peptide promotes formation of lipid-mediated FFA clusters; further increase in peptide concentration results in dissipation of these clusters.


Anti-Bacterial Agents/chemistry , Peptaibols/chemistry , Phosphatidylcholines/chemistry , Anti-Bacterial Agents/chemical synthesis , Electron Spin Resonance Spectroscopy , Peptaibols/chemical synthesis
18.
Biochemistry ; 60(1): 19-30, 2021 01 12.
Article En | MEDLINE | ID: mdl-33320519

Double electron-electron resonance (DEER, also known as PELDOR) and circular dichroism (CD) spectroscopies were explored for the purpose of studying the specificity of the conformation of peptides induced by their assembly into a self-recognizing system. The E and K peptides are known to form a coiled-coil heterodimer. Two paramagnetic TOAC α-amino acid residues were incorporated into each of the peptides (denoted as K** and E**), and a three-dimensional structural investigation in the presence or absence of their unlabeled counterparts E and K was performed. The TOAC spin-labels, replacing two Ala residues in each compound, are covalently and quasi-rigidly connected to the peptide backbone. They are known not to disturb the native structure, so that any conformational change can easily be monitored and assigned. DEER spectroscopy enables the measurement of the intramolecular electron spin-spin distance distribution between the two TOAC labels, within a length range of 1.5-8 nm. This method allows the individual conformational changes for the K**, K**/E, E**, and E**/K molecules to be investigated in glassy frozen solutions. Our data reveal that the conformations of the E** and K** peptides are strongly influenced by the presence of their counterparts. The results are discussed with those from CD spectroscopy and with reference to the already reported nuclear magnetic resonance data. We conclude that the combined DEER/TOAC approach allows us to obtain accurate and reliable information about the conformation of the peptides before and after their assembly into coiled-coil heterodimers. Applications of this induced fit method to other two-component, but more complex, systems, like a receptor and antagonists, a receptor and a hormone, and an enzyme and a ligand, are discussed.


Circular Dichroism/methods , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy/methods , Peptide Fragments/chemistry , Spin Labels , Models, Molecular , Protein Structure, Secondary
19.
Langmuir ; 36(39): 11655-11660, 2020 10 06.
Article En | MEDLINE | ID: mdl-32975956

Small sugars are known to stabilize biological membranes under extreme conditions of freezing and desiccation. The proposed mechanisms of stabilization suggest membrane-sugar interactions to be either attractive or repulsive. To obtain new insight into the problem, we use a recently developed low-frequency Raman scattering approach which allows detecting membrane mechanical vibrations. For model membranes of palmitoyl-oleoyl-glycero-phosphocholine (POPC) hydrated in aqueous sucrose and trehalose solutions, we studied the Raman peak between 12 and 15 cm-1 that is attributed to an eigenmode of the normal mechanical vibrations of a lipid monolayer. For both sugars, similar results were obtained. With an increase in sugar concentration in solution, the frequency position of the peak was found to decrease by ∼13% which was interpreted as a consequence of the membrane thickening due sugar monolayer adsorption on the membrane surface. The concentration dependence of the peak frequency position was satisfactorily described by a Langmuir monolayer adsorption model. It is concluded that, at small sugar concentrations (less than 0.2 M), the membrane-sugar interactions are attractive, while at higher concentrations (more than 0.4 M) the attraction disappears. The data obtained show that one sugar molecule on the surface interacts with approximately 3-4 polar lipid heads.

20.
Chem Phys Lipids ; 226: 104817, 2020 01.
Article En | MEDLINE | ID: mdl-31525380

Low-temperature molecular mobility and packing in biological tissues are important for their survival upon cryopreservation. Electron paramagnetic resonance (EPR) in its pulsed version of electron spin echo (ESE) allows studying stochastic librations of spin-labeled molecules, the type of motion which dominates at low temperatures. These librations are characterized by the parameter <α2>τc where <α2> is the mean squared angular amplitude and τc is the correlation time for the motion. This parameter is known to be larger for higher temperature and for looser intermolecular structure. In this work, ESE data for the bilayers comprised of doubly-unsaturated DOPC (dioleoyl-glycero-phosphocholine) lipids and mono-unsaturated POPC (palmitoyl-oleoyl-glycero-phosphocholine) lipids with spin-labeled stearic acids added were obtained in the temperature range between 80 and 210 K; the results were compared also with the previously obtained data for fully-saturated DPPC (dipalmitoyl-glycero-phosphocholine) lipid bilayers [J. Phys. Chem. B2014, 118, 12,478-12,485; Appl. Magn. Reson. 2018, 49, 1369-1383]. It turned out that for DOPC bilayers the <α2>τc values are of intermediate magnitude between those for POPC and DPPC bilayers, which implies an intermediate density of lipid packing. A possible explanation of this result could be rearrangement at cryogenic temperatures of the DOPC lipid tails, with their terminal segments folding cooperatively. This interpretation is also in agreement with the known thermodynamic properties of gel-fluid transition for DOPC bilayer.


Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Temperature , Electron Spin Resonance Spectroscopy
...