Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Cleve Clin J Med ; 86(8): 543-553, 2019 Aug.
Article En | MEDLINE | ID: mdl-31385792

Children with autism spectrum disorder (ASD) eventually grow up and need to make the transition from pediatric services to adult. This is a diverse patient population.


Autism Spectrum Disorder/diagnosis , Adult , Age Factors , Asperger Syndrome/diagnosis , Asperger Syndrome/therapy , Autism Spectrum Disorder/therapy , Humans , Parents/psychology , Physician's Role , Prognosis
2.
Mol Vis ; 23: 140-148, 2017.
Article En | MEDLINE | ID: mdl-28356706

PURPOSE: Familial exudative vitreoretinopathy (FEVR) is caused by mutations in the genes encoding low-density lipoprotein receptor-related protein (LRP5) or its interacting partners, namely frizzled class receptor 4 (FZD4) and norrin cystine knot growth factor (NDP). Mouse models for Lrp5, Fzd4, and Ndp have proven to be important for understanding the retinal pathophysiology underlying FEVR and systemic abnormalities related to defective Wnt signaling. Here, we report a new mouse mutant, tvrm111B, which was identified by electroretinogram (ERG) screening of mice generated in the Jackson Laboratory Translational Vision Research Models (TVRM) mutagenesis program. METHODS: ERGs were used to examine outer retinal physiology. The retinal vasculature was examined by in vivo retinal imaging, as well as by histology and immunohistochemistry. The tvrm111B locus was identified by genetic mapping of mice generated in a cross to DBA/2J, and subsequent sequencing analysis. Gene expression was examined by real-time PCR of retinal RNA. Bone mineral density (BMD) was examined by peripheral dual-energy X-ray absorptiometry. RESULTS: The tvrm111B allele is inherited as an autosomal recessive trait. Genetic mapping of the decreased ERG b-wave phenotype of tvrm111B mice localized the mutation to a region on chromosome 19 that included Lrp5. Sequencing of Lrp5 identified the insertion of a cytosine (c.4724_4725insC), which is predicted to cause a frameshift that disrupts the last three of five conserved PPPSPxS motifs in the cytoplasmic domain of LRP5, culminating in a premature termination. In addition to a reduced ERG b-wave, Lrp5tvrm111B homozygotes have low BMD and abnormal features of the retinal vasculature that have been reported previously in Lrp5 mutant mice, including persistent hyaloid vessels, leakage on fluorescein angiography, and an absence of the deep retinal capillary bed. CONCLUSIONS: The phenotype of the Lrp5tvrm111B mutant includes abnormalities of the retinal vasculature and of BMD. This model may be a useful resource to further our understanding of the biological role of LRP5 and to evaluate experimental therapies for FEVR or other conditions associated with LRP5 dysfunction.


Bone Density , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mutagenesis/genetics , Mutation/genetics , Retinal Vessels/abnormalities , Retinal Vessels/physiopathology , Animals , Electroretinography , Gene Expression Regulation , Homozygote , Male , Mice, Inbred C57BL , Organ Size/genetics , Phenotype , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Wnt Signaling Pathway/genetics
3.
Sci Rep ; 6: 33974, 2016 Sep 30.
Article En | MEDLINE | ID: mdl-27687499

Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseß1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseß1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.

4.
Biol Open ; 5(11): 1585-1594, 2016 11 15.
Article En | MEDLINE | ID: mdl-27638769

The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain 'orphan' proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis.

5.
Front Evol Neurosci ; 4: 14, 2012.
Article En | MEDLINE | ID: mdl-23226128

Since the time of Darwin, biologists have wondered whether birdsong and music may serve similar purposes or have the same evolutionary precursors. Most attempts to compare song with music have focused on the qualities of the sounds themselves, such as melody and rhythm. Song is a signal, however, and as such its meaning is tied inextricably to the response of the receiver. Imaging studies in humans have revealed that hearing music induces neural responses in the mesolimbic reward pathway. In this study, we tested whether the homologous pathway responds in songbirds exposed to conspecific song. We played male song to laboratory-housed white-throated sparrows, and immunolabeled the immediate early gene product Egr-1 in each region of the reward pathway that has a clear or putative homologue in humans. We found that the responses, and how well they mirrored those of humans listening to music, depended on sex and endocrine state. In females with breeding-typical plasma levels of estradiol, all of the regions of the mesolimbic reward pathway that respond to music in humans responded to song. In males, we saw responses in the amygdala but not the nucleus accumbens - similar to the pattern reported in humans listening to unpleasant music. The shared responses in the evolutionarily ancient mesolimbic reward system suggest that birdsong and music engage the same neuroaffective mechanisms in the intended listeners.

6.
Endocrinology ; 152(12): 4865-81, 2011 Dec.
Article En | MEDLINE | ID: mdl-22067316

The neurohypophyseal hormones vasopressin and oxytocin are produced and released within the mammalian brain, where they act via multiple receptor subtypes. The neural distributions of these receptors, for example, V1a and oxytocin receptors, have been well described in many mammals. In birds, the distribution of binding sites for the homologous neuropeptides, vasotocin (VT) and mesotocin, has been studied in several species by using synthetic radioligands designed to bind to mammalian receptors. Such binding studies, however, may not reveal the specific distributions of each receptor subtype. To identify and map the receptors likely to bind VT and mesotocin, we generated partial cDNA sequences for four VT receptor subtypes, VT1, VT2 (V1b), VT3 (oxytocin-like), and VT4 (V1a), in white-throated sparrow (Zonotrichia albicollis) and zebra finch (Taeniopygia guttata). These genes shared high sequence identity with the homologous avian and mammalian neurohypophyseal peptide receptors, and we found evidence for VT1, VT3, and VT4 receptor mRNA expression throughout the brains of both species. As has been described in rodents, there was striking interspecific and intraspecific variation in the densities and distribution of these receptors. For example, whereas the VT1 receptor mRNA was more widespread in zebra finch brain, the VT3 (oxytocin-like) receptor mRNA was more prevalent in the sparrow brain. Although VT2 (V1b) receptor mRNA was abundant in the pituitary, it was not found in the brain. Because of their association with brain regions implicated in social behavior, the VT1, VT3, and VT4 receptors are all likely candidates for mediating the behavioral effects of VT.


Brain Chemistry , RNA, Messenger/analysis , Receptors, Vasopressin/genetics , Songbirds/genetics , Animals , Pituitary Gland/chemistry , Species Specificity
...