Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol ; 39(3): 1666-1681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38031637

ABSTRACT

The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1ß, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-ß1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and ß-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/ß-catenin protein expressions.


Subject(s)
Cichorium intybus , Cynara scolymus , Renal Insufficiency , Rats , Animals , Carbon Tetrachloride/toxicity , Oxidative Stress , Cynara scolymus/metabolism , Antioxidants/metabolism , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Plant Extracts/pharmacology , Catenins/metabolism , Catenins/pharmacology , Liver
2.
Environ Sci Pollut Res Int ; 30(28): 72930-72948, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37184799

ABSTRACT

Kidney injury represents a global concern, leading to chronic kidney disease. The organophosphate insecticide malathion (MT) demonstrates environmental disturbance and impairment of different mammalian organs, including kidneys. Likewise, gamma-irradiation (IRR) provokes destructive effects in the kidneys. Rutin is a flavonoid glycoside that exhibits nephro-protective and radio-protective properties. This manuscript focused on investigating the protective response of rutin on MT- and IRR-triggered kidney injury in rats. Rats were randomly divided into eight groups of twelve: G1 (C), control; G2 (Rutin), rutin-treated rats; G3 (IRR), gamma-irradiated rats; G4 (MT), malathion-treated rats; G5 (IRR/MT), gamma-irradiated rats treated with malathion; G6 (IRR/Rutin), gamma-irradiated rats treated with rutin; G7 (MT/Rutin), rats treated with malathion and rutin; and G8 (IRR/MT/Rutin), gamma-irradiated rats treated with malathion and rutin, every day for 30 days. The results demonstrated that rutin treatment regulated the biochemical parameters, the oxidative stress, the antioxidant status, and the inflammatory responses due to the down-regulation of the renal NF-κB p65 protein expression. Moreover, it amended the activity of acetylcholinesterase (AchE), angiotensin ACE I, and ACE II-converting enzymes. Besides, it regulated the iNOS, eNOS, miR-129-3p, miR-200c, and miR-210 gene expressions and bradykinin receptor (B1R and B2R) protein expressions. Histopathological examinations of the kidney tissue confirmed these investigated results. It could be concluded that rutin demonstrated nephro/radioprotection and counteracted the toxicological effects triggered in the kidney tissues of IRR, MT, and IRR/MT intoxicated rats, via regulating miR-129-3p, miR-200c-3p, and miR-210-3p gene expressions, which consequently regulated B2R protein expressions, ACE II activity, and HIF-1α production, respectively.


Subject(s)
MicroRNAs , Rutin , Rats , Animals , Rutin/pharmacology , Malathion , Acetylcholinesterase/metabolism , Kidney/metabolism , Oxidative Stress , MicroRNAs/genetics , Gene Expression , Inflammation/metabolism , Mammals
3.
Environ Toxicol ; 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33350580

ABSTRACT

Acetaminophen (APAP) is one of the few recommended analgesic and antipyretic drugs in some critical cases such as viral disease COVID-19. However, the unrestricted use of APAP develops liver disorders. Hepatotoxicity and liver injury can also be induced by ionizing radiation (IR) during radiotherapy. The data of the current study represents that treatment of rats with either APAP-overdose, or gamma-irradiation (R) induces hepatotoxicity, results in significant increases of the hepatic-enzymes activities (ALT, AST, ALP, GGT, LDH, and MDH), as well as enhancement of triglycerides, total cholesterol levels, combined with declines in albumin and total protein contents. An enhancement of the lipid peroxides (malondialdehyde; MDA), and nitric oxide levels along with a decline of reduced glutathione contents and suppression of superoxide dismutase, catalase, and glutathione peroxidase activities are also observed within the liver tissues of intoxicated animals. TNF-α, IL-1ß, IL-6, iNOS, Cytochrome P450 2E1 (CYP2E1), miR-802 gene expression, NF-κB, and calcium levels are up-regulated, while Nuclear factor erythroid-related factor-2 (Nrf2), Hemoxygenase-1 (HO-1) protein and gene expressions, as well as, glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H-Quinone oxidoreductase (NQO1), and miR-122 gene expressions are down-regulated in the livers of intoxicated animals. All these parameters show significant improvement in R/APAP intoxicated animals. Curcumin pretreatment develops an amelioration of these effects in APAP-overdose, R-exposure, or R/APAP treatments. In conclusion, oral administration of curcumin shows hepatoprotective effects against APAP-overdose induced hepatic damage in normal and gamma-irradiated rats through prospective regulation of the therapeutic targets CYP2E1, Nrf2, and NF-κB, via organizing the miR-122 and miR-802 gene expression.

4.
J Photochem Photobiol B ; 161: 91-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27232147

ABSTRACT

The activity of flaxseed oil (FSO) on gamma-irradiation (7Gy) and/or carbon tetrachloride (CCl4) induced acute neurotoxicity in rats' brain was investigated. The results revealed a significant decrease (p<0.05) in superoxide dismutase (SOD), catalase (CAT), glutathione-peroxidase (GSH-Px) activities, reduced glutathione (GSH) and manganese (Mn) contents. Further, a significant elevation (p<0.05) in malondialdehyde, nitric oxide (NO), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1-beta (IL-1ß), Interleukin-6 (IL-6), transforming growth factor-beta-1 (TGF-ß1), iron (Fe), calcium (Ca), copper (Cu) and magnesium (Mg) levels were observed. Furthermore, the relative ratio of xanthine oxidase (XO) and inducible nitric-oxide synthase (iNOS) gene expression levels were elevated in the brain tissues of γ-irradiated and CCl4 intoxicated animals. Those effects were augmented due to the effect of CCl4-induced toxicity in γ-irradiated rats. The treatment of FSO displayed significant amendment of the studied parameters in the brain tissues of γ-irradiated and CCl4 intoxicated animals. FSO has a neuroprotective effect against CCl4-induced brain injury in gamma-irradiated rats. This effect is interrelated to the ability of FSO to scavenges the free radicals, enhances the antioxidant enzymes activity, increases GSH contents, down-regulates the inflammatory responses, ameliorates the iron, calcium, copper, magnesium, manganese levels and inhibiting the gene expression level of XO and iNOS in the brain tissues of intoxicated animals. In conclusion, this study demonstrated that the potent antioxidant and anti-inflammatory activities of FSO have the ability to improve the antioxidant status, suppress the inflammatory responses, and regulate the trace elements in the brain tissues of γ-irradiated, CCl4, and their combined effect in intoxicated animals. Consequently, FSO exhibited neuroprotective activity on γ-irradiated, CCl4, and their combined effect induced brain injury in rats.


Subject(s)
Brain/drug effects , Carbon Tetrachloride/toxicity , Gamma Rays , Linseed Oil/pharmacology , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Brain/metabolism , Brain/radiation effects , Catalase/metabolism , Cytokines/analysis , Enzyme-Linked Immunosorbent Assay , Female , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Linseed Oil/chemistry , Malondialdehyde/metabolism , Metals/analysis , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/radiation effects , Rats , Rats, Wistar , Spectrophotometry, Atomic , Superoxide Dismutase/metabolism , Xanthine Oxidase/genetics , Xanthine Oxidase/metabolism
5.
J Photochem Photobiol B ; 160: 1-10, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27085796

ABSTRACT

Carbon tetrachloride (CCl4) and ionizing radiation are well known environmental pollutants that generate free radicals and induce oxidative stress. The liver is the primary and major target organ responsible for the metabolism of drugs, toxic chemicals and affected by irradiation. This study investigated the effect of grape seed oil (GSO) on acute liver injury induced by carbon tetrachloride (CCl4) in γ-irradiated rats (7Gy). CCl4-intoxicated rats exhibited an elevation of ALT, AST activities, IL-6 and TNF-α level in the serum. Further, the levels of MDA, NO, NF-κB and the gene expression of CYP2E1, iNOS and Caspase-3 were increased, and SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Furthermore, silent information regulator protein 1 (SIRT1) gene expression was markedly down-regulated. Additionally, alterations of the trace elements; copper, manganese, zinc and DNA fragmentation was observed in the hepatic tissues of the intoxicated group. These effects were augmented in CCl4-intoxicated-γ-irradiated rats. However, the administration of GSO ameliorated these parameters. GSO exhibit protective effects on CCl4 induced acute liver injury in γ-irradiated rats that could be attributed to its potent antioxidant, anti-inflammatory and anti-apoptotic activities. The induction of the antioxidant enzymes activities, down-regulation of the CYP2E1, iNOS, Caspase-3 and NF-κB expression, up-regulation of the trace elements concentration levels and activation of SIRT1 gene expression are responsible for the improvement of the antioxidant and anti-inflammatory status in the hepatic tissues and could be claimed to be the hepatoprotective mechanism of GSO.


Subject(s)
Carbon Tetrachloride/toxicity , Liver/drug effects , Oxidative Stress/drug effects , Plant Oils/pharmacology , Alanine Transaminase/blood , Animals , Antioxidants/metabolism , Aspartate Aminotransferases/blood , Caspase 3/genetics , Cytochrome P-450 CYP2E1/genetics , Female , Interleukin-6/blood , Liver/radiation effects , Nitric Oxide Synthase Type II/genetics , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...