Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37627273

ABSTRACT

Chronic hepatitis B virus (HBV) infection leads to the development of cirrhosis and hepatocellular carcinoma. Lifelong treatment with nucleotides/nucleoside antiviral agents is effective at suppressing HBV replication, however, adherence to daily therapy can be challenging. This review discusses recent advances in the development of long-acting formulations for HBV treatment and prevention, which could potentially improve adherence. Promising new compounds that target distinct steps of the virus life cycle are summarized. In addition to treatments that suppress viral replication, curative strategies are focused on the elimination of covalently closed circular DNA and the inactivation of the integrated viral DNA from infected hepatocytes. We highlight promising long-acting antivirals and genome editing strategies for the elimination or deactivation of persistent viral DNA products in development.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B, Chronic/drug therapy , DNA, Viral/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
Sci Adv ; 8(51): eade9582, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36563152

ABSTRACT

Treatment of chronic hepatitis B virus (HBV) requires lifelong daily therapy. However, suboptimal adherence to the existing daily therapy has led to the need for ultralong-acting antivirals. A lipophilic and hydrophobic ProTide was made by replacing the alanyl isopropyl ester present in tenofovir alafenamide (TAF) with a docosyl phenyl alanyl ester, now referred to as M1TFV. NM1TFV and nanoformulated TAF (NTAF) nanocrystals were formulated by high-pressure homogenization. A single intramuscular injection of NM1TFV, but not NTAF, delivered at a dose of TFV equivalents (168 milligrams per kilogram) demonstrated monthslong antiviral activities in both HBV-transgenic and human hepatocyte transplanted TK-NOG mice. The suppression of HBV DNA in blood was maintained for 3 months. Laboratory experiments on HBV-transfected HepG2.2.15 cells affirmed the animal results and the critical role of docosanol in the sustained NM1TFV antiviral responses. These results provide clear "proof of concept" toward an emerging therapeutic paradigm for the treatment and prevention of HBV infection.

3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613717

ABSTRACT

The incidence of sudden cardiac death (SCD) in people living with HIV infection (PLWH), especially those with inadequate viral suppression, is high and the reasons for this remain incompletely characterized. The timely opening and closing of type 2 ryanodine receptor (RyR2) is critical for ensuring rhythmic cardiac contraction-relaxation cycles, and the disruption of these processes can elicit Ca2+ waves, ventricular arrhythmias, and SCD. Herein, we show that the HIV protein Tat (HIV-Tat: 0-52 ng/mL) and therapeutic levels of the antiretroviral drugs atazanavir (ATV: 0-25,344 ng/mL), efavirenz (EFV: 0-11,376 ng/mL), and ritonavir (RTV: 0-25,956 ng/mL) bind to and modulate the opening and closing of RyR2. Abacavir (0-14,315 ng/mL), bictegravir (0-22,469 ng/mL), Rilpivirine (0-14,360 ng/mL), and tenofovir disoproxil fumarate (0-18,321 ng/mL) did not alter [3H]ryanodine binding to RyR2. Pretreating RyR2 with low HIV-Tat (14 ng/mL) potentiated the abilities of ATV and RTV to bind to open RyR2 and enhanced their ability to bind to EFV to close RyR2. In silico molecular docking using a Schrodinger Prime protein-protein docking algorithm identified three thermodynamically favored interacting sites for HIV-Tat on RyR2. The most favored site resides between amino acids (AA) 1702-1963; the second favored site resides between AA 467-1465, and the third site resides between AA 201-1816. Collectively, these new data show that HIV-Tat, ATV, EFV, and RTV can bind to and modulate the activity of RyR2 and that HIV-Tat can exacerbate the actions of ATV, EFV, and RTV on RyR2. Whether the modulation of RyR2 by these agents increases the risk of arrhythmias and SCD remains to be explored.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Atazanavir Sulfate/pharmacology , Atazanavir Sulfate/therapeutic use , Ritonavir/pharmacology , Ritonavir/therapeutic use , Ryanodine Receptor Calcium Release Channel , HIV Infections/drug therapy , Anti-HIV Agents/adverse effects , Molecular Docking Simulation , Oligopeptides/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use
4.
Mol Neurobiol ; 58(11): 5703-5721, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34390469

ABSTRACT

Dolutegravir (DTG) is a first-line antiretroviral drug (ARV) used in combination therapy for the treatment of human immunodeficiency virus type-1 (HIV-1) infection. The drug is effective, safe, and well tolerated. Nonetheless, concerns have recently emerged for its usage in pregnant women or those of child-bearing age. Notably, DTG-based ARV regimens have been linked to birth defects seen as a consequence of periconceptional usages. To this end, uncovering an underlying mechanism for DTG-associated adverse fetal development outcomes has gained clinical and basic research interest. We now report that DTG inhibits matrix metalloproteinases (MMPs) activities that could affect fetal neurodevelopment. DTG is a broad-spectrum MMPs inhibitor and binds to Zn++ at the enzyme's catalytic domain. Studies performed in pregnant mice show that DTG readily reaches the fetal central nervous system during gestation and inhibits MMP activity. Postnatal screenings of brain health in mice pups identified neuroinflammation and neuronal impairment. These abnormalities persist as a consequence of in utero DTG exposure. We conclude that DTG inhibition of MMPs activities during gestation has the potential to affect prenatal and postnatal neurodevelopment.


Subject(s)
Anti-Retroviral Agents/toxicity , Heterocyclic Compounds, 3-Ring/toxicity , Matrix Metalloproteinase Inhibitors/toxicity , Neural Tube Defects/chemically induced , Neurodevelopmental Disorders/chemically induced , Neuroinflammatory Diseases/chemically induced , Oxazines/toxicity , Piperazines/toxicity , Pyridones/toxicity , Animals , Anti-Retroviral Agents/pharmacokinetics , Anti-Retroviral Agents/pharmacology , Brain/embryology , Brain/enzymology , Catalytic Domain/drug effects , Female , Gene Expression Profiling , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacology , Male , Matrix Metalloproteinase Inhibitors/pharmacokinetics , Matrix Metalloproteinase Inhibitors/pharmacology , Mice , Mice, Inbred C3H , Molecular Docking Simulation , Neural Tube Defects/embryology , Neuroimaging , Neuroinflammatory Diseases/embryology , Oxazines/pharmacokinetics , Oxazines/pharmacology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Placenta/chemistry , Pregnancy , Pyridones/pharmacokinetics , Pyridones/pharmacology , Tissue Distribution , Zinc/metabolism
5.
Nat Commun ; 12(1): 3453, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103484

ABSTRACT

A once every eight-week cabotegravir (CAB) long-acting parenteral is more effective than daily oral emtricitabine and tenofovir disoproxil fumarate in preventing human immunodeficiency virus type one (HIV-1) transmission. Extending CAB dosing to a yearly injectable advances efforts for the elimination of viral transmission. Here we report rigor, reproducibility and mechanistic insights for a year-long CAB injectable. Pharmacokinetic (PK) profiles of this nanoformulated CAB prodrug (NM2CAB) are affirmed at three independent research laboratories. PK profiles in mice and rats show plasma CAB levels at or above the protein-adjusted 90% inhibitory concentration for a year after a single dose. Sustained native and prodrug concentrations are at the muscle injection site and in lymphoid tissues. The results parallel NM2CAB uptake and retention in human macrophages. NM2CAB nanocrystals are stable in blood and tissue homogenates. The long apparent drug half-life follows pH-dependent prodrug hydrolysis upon slow prodrug nanocrystal dissolution and absorption. In contrast, solubilized prodrug is hydrolyzed in hours in plasma and tissues from multiple mammalian species. No toxicities are observed in animals. These results affirm the pharmacological properties and extended apparent half-life for a nanoformulated CAB prodrug. The report serves to support the mechanistic design for drug formulation safety, rigor and reproducibility.


Subject(s)
Drug Liberation , Lipids/chemistry , Nanoparticles/chemistry , Prodrugs/pharmacology , Pyridones/pharmacokinetics , Animals , Drug Compounding , Endocytosis , Humans , Kinetics , Male , Mice, Inbred BALB C , Pyridones/administration & dosage , Pyridones/blood , Rats, Sprague-Dawley , Reproducibility of Results , Tissue Distribution
6.
Expert Opin Drug Deliv ; 17(9): 1227-1238, 2020 09.
Article in English | MEDLINE | ID: mdl-32552187

ABSTRACT

INTRODUCTION: Despite significant advances in treatment and prevention of HIV-1 infection, poor adherence to daily combination antiretroviral therapy (ART) regimens remains a major obstacle toward achieving sustained viral suppression and prevention. Adherence to ART could also be compromised by adverse drug reactions and societal factors that limit access to therapy. Therefore, medicines that aim to improve adherence by limiting ART side effects, frequency of dosing and socially acceptable regimens are becoming more attractive. AREAS COVERED: This review highlights recent advances and challenges in the development of long-acting drug delivery strategies for HIV prevention and treatment. Approaches for extended oral and transdermal deliveries, microbicides, broadly neutralizing antibodies, and long-acting implantable and injectable deliveries are reviewed. EXPERT OPINION: Emerging approaches on long-acting antiretroviral therapies and broadly neutralizing antibody technologies are currently at various stages of development. Such efforts, if successful and become broadly accepted by clinicians and users, will provide newer and simpler options for prevention and treatment of HIV infection.


Subject(s)
Anti-HIV Agents/administration & dosage , Drug Delivery Systems , HIV Infections/drug therapy , Administration, Cutaneous , Humans
7.
Nat Mater ; 19(8): 910-920, 2020 08.
Article in English | MEDLINE | ID: mdl-32341511

ABSTRACT

Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB's effectiveness.


Subject(s)
Anti-Retroviral Agents/metabolism , Nanostructures/chemistry , Prodrugs/chemistry , Prodrugs/metabolism , Pyridones/metabolism , Animals , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/toxicity , Biological Transport , Delayed-Action Preparations , Drug Compounding , Drug Interactions , Drug Stability , Mice , Pyridones/pharmacology , Pyridones/toxicity
8.
Nanomedicine ; 28: 102185, 2020 08.
Article in English | MEDLINE | ID: mdl-32217146

ABSTRACT

Nowadays, there is a strong request for the treatment of chronic HBV-infection with direct acting antivirals. Furthermore, prevalent human immunodeficiency virus (HIV-1) and hepatitis B (HBV) co-infections highlight an immediate need for dual long-acting and easily administered antivirals. To this end, we modified lamivudine (3TC), a nucleoside analog inhibitor of both viruses, into a lipophilic monophosphorylated prodrug (M23TC). Prior work demonstrated that nanoformulation of M23TC (NM23TC) enhanced drug stability, controlled dissolution and improved access to sites of viral replication. The present study evaluated the efficacy of a NM23TC in HBV-infected chimeric liver humanized mice. Levels of HBV DNA and HBsAg in plasma were monitored up to 8 weeks posttreatment. A single intramuscular dose of 75 mg/kg 3TC equivalents of nanoformulated NM23TC provided sustained drug levels and suppressed HBV replication in humanized mice for 4 weeks. The results support further development of this long-acting 3TC nanoformulation for HBV treatment and prevention.


Subject(s)
Lamivudine/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Immunohistochemistry , Lamivudine/pharmacology , Male , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Virus Replication/drug effects
9.
Int J Nanomedicine ; 14: 6231-6247, 2019.
Article in English | MEDLINE | ID: mdl-31496683

ABSTRACT

PURPOSE: A palmitoylated prodrug of emtricitabine (FTC) was synthesized to extend the drug's half-life, antiretroviral activities and biodistribution. METHODS: A modified FTC prodrug (MFTC) was synthesized by palmitoyl chloride esterification. MFTC's chemical structure was evaluated by nuclear magnetic resonance. The created hydrophobic prodrug nanocrystals were encased into a poloxamer surfactant and the pharmacokinetics (PK), biodistribution and antiretroviral activities of the nanoformulation (NMFTC) were assessed. The conversion of MFTC to FTC triphosphates was evaluated. RESULTS: MFTC coated with poloxamer formed stable nanocrystals (NMFTC). NMFTC demonstrated an average particle size, polydispersity index and zeta potential of 350 nm, 0.24 and -20 mV, respectively. Drug encapsulation efficiency was 90%. NMFTC was readily taken up by human monocyte-derived macrophages yielding readily detected intracellular FTC triphosphates and an extended PK profile. CONCLUSION: NMFTC shows improved antiretroviral activities over native FTC. This is coordinate with its extended apparent half-life. The work represents an incremental advance in the development of a long-acting FTC formulation.


Subject(s)
Drug Compounding , Emtricitabine/pharmacology , Nanoparticles/chemistry , Prodrugs/pharmacology , Animals , Anti-Retroviral Agents/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Emtricitabine/blood , Emtricitabine/chemical synthesis , Emtricitabine/chemistry , Humans , Kinetics , Macrophages/drug effects , Male , Nanoparticles/ultrastructure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Proton Magnetic Resonance Spectroscopy , Rats, Sprague-Dawley
10.
J Control Release ; 311-312: 201-211, 2019 10.
Article in English | MEDLINE | ID: mdl-31491432

ABSTRACT

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options. Further optimization can improve dosing frequency, lower injection volumes, and facilitate drug-tissue distributions. To this end, we report the synthesis of a library of RPV prodrugs designed to sustain drug plasma concentrations and improved tissue biodistribution. The lead prodrug M3RPV was nanoformulated into the stable LA injectable NM3RPV. NM3RPV treatment led to RPV plasma concentrations above the protein-adjusted 90% inhibitory concentration for 25 weeks with substantial tissue depots after a single intramuscular injection in BALB/cJ mice. NM3RPV elicited 13- and 26-fold increases in the RPV apparent half-life and mean residence time compared to native drug formulation. Taken together, proof-of-concept is provided that nanoformulated RPV prodrugs can extend the apparent drug half-life and improve tissue biodistribution. These results warrant further development for human use.


Subject(s)
Anti-HIV Agents/administration & dosage , Nanoparticles/administration & dosage , Prodrugs/administration & dosage , Rilpivirine/administration & dosage , Animals , Anti-HIV Agents/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , HIV-1/drug effects , Humans , Macaca mulatta , Macrophages/metabolism , Male , Mice, Inbred BALB C , Prodrugs/pharmacokinetics , Rilpivirine/pharmacokinetics , Tissue Distribution
11.
Biomaterials ; 222: 119441, 2019 11.
Article in English | MEDLINE | ID: mdl-31472458

ABSTRACT

While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.


Subject(s)
Anti-Retroviral Agents/chemistry , Anti-Retroviral Agents/chemical synthesis , Emtricitabine/chemistry , Prodrugs/chemistry , Prodrugs/chemical synthesis , Amides/chemistry , Animals , Humans , Male , Phosphoric Acids/chemistry , Poloxamer/chemistry , Polyphosphates/chemistry , Rats , Rats, Sprague-Dawley
12.
Org Lett ; 21(7): 2281-2284, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30859823

ABSTRACT

Alloviroidin is a cyclic heptapeptide, produced by several species of Amanita mushrooms, that demonstrates high affinity for F-actin as is characteristic of virotoxins and phallotoxins. Alloviroidin was synthesized via a [3 + 4] fragment condensation of Fmoc-d-Thr(OTBS)-d-Ser(OTBS)-(2 S,3 R,4 R)-DHPro(OTBS)2-OH and H-Ala-Trp(2-SO2Me)-(2 S,4 S)-DHLeu(5-OTBS)-Val-OMe to form bond A. The linear heptapeptide favored a turn conformation, facilitating cyclization between Val1 and d-Thr2 (position B). Global deprotection and HPLC purification afforded alloviroidin with NMR spectra in excellent agreement with the natural product.

13.
Biomaterials ; 185: 174-193, 2018 12.
Article in English | MEDLINE | ID: mdl-30245386

ABSTRACT

Antiretroviral therapy (ART) has changed the outcome of human immunodeficiency virus type one (HIV-1) infection from certain death to a life free of disease co-morbidities. However, infected people must remain on life-long daily ART. ART reduces but fails to eliminate the viral reservoir. In order to improve upon current treatment regimens, our laboratory created long acting slow effective release (LASER) ART nanoformulated prodrugs from native medicines. LASER ART enables antiretroviral drugs (ARVs) to better reach target sites of HIV-1 infection while, at the same time, improve ART's half-life and potency. However, novel ARV design has been slowed by prolonged pharmacokinetic testing requirements. To such ends, tri-modal theranostic nanoparticles were created with single-photon emission computed tomography (SPECT/CT), magnetic resonance imaging (MRI) and fluorescence capabilities to predict LASER ART biodistribution. The created theranostic ARV probes were then employed to monitor drug tissue distribution and potency. Intrinsically 111Indium (111In) radiolabeled, europium doped cobalt-ferrite particles and rilpivirine were encased in a polycaprolactone core surrounded by a lipid shell (111InEuCF-RPV). Particle cell and tissue distribution, and antiretroviral activities were sustained in macrophage tissue depots. 111InEuCF-PCL/RPV particles injected into mice demonstrated co-registration of MRI and SPECT/CT tissue signals with RPV and cobalt. Cell and animal particle biodistribution paralleled ARV activities. We posit that particle selection can predict RPV distribution and potency facilitated by multifunctional theranostic nanoparticles.


Subject(s)
Anti-Retroviral Agents/pharmacokinetics , Nanoparticles/chemistry , Rilpivirine/pharmacokinetics , Animals , Anti-Retroviral Agents/pharmacology , Cobalt/chemistry , Drug Delivery Systems , Europium/chemistry , Ferric Compounds/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , Magnetic Resonance Imaging/methods , Male , Mice, Inbred BALB C , Optical Imaging/methods , Rilpivirine/pharmacology , Theranostic Nanomedicine , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods
14.
Nat Mater ; 17(2): 114-116, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29358769
15.
Theranostics ; 8(1): 256-276, 2018.
Article in English | MEDLINE | ID: mdl-29290806

ABSTRACT

RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION: We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.


Subject(s)
Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Theranostic Nanomedicine/methods , Animals , Drug Delivery Systems/methods , Europium/chemistry , Europium/pharmacokinetics , Folic Acid/chemistry , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Macaca mulatta , Macrophages/metabolism , Microscopy, Confocal , Nanoparticles/chemistry , Oxazines , Piperazines , Pyridones
16.
Nat Mater ; 17(2): 114-116, 2018 Feb.
Article in English | MEDLINE | ID: mdl-31745273
17.
Acta Biomater ; 49: 507-520, 2017 02.
Article in English | MEDLINE | ID: mdl-27916740

ABSTRACT

The size, shape and chemical composition of europium (Eu3+) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu3+ ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.2nm) were prepared by solvothermal techniques and encapsulated into poloxamer 407-coated mesoporous silica (Si-P407) to form superparamagnetic monodisperse Si-CFEu nanoparticles with a size of ∼140nm. Folic acid (FA) nanoparticle decoration (FA-Si-CFEu, size ∼140nm) facilitated monocyte-derived macrophage (MDM) targeting. FA-Si-CFEu MDM uptake and retention was higher than seen with Si-CFEu nanoparticles. The transverse relaxivity of both Si-CFEu and FA-Si-CFEu particles were r2=433.42mM-1s-1 and r2=419.52mM-1s-1 (in saline) and r2=736.57mM-1s-1 and r2=814.41mM-1s-1 (in MDM), respectively. The results were greater than a log order-of-magnitude than what was observed at replicate iron concentrations for ultrasmall superparamagnetic iron oxide (USPIO) particles (r2=31.15mM-1s-1 in saline) and paralleled data sets obtained for T2 magnetic resonance imaging. We now provide a developmental opportunity to employ these novel particles for theranostic drug distribution and efficacy evaluations. STATEMENT OF SIGNIFICANCE: A novel europium (Eu3+) doped cobalt ferrite (Si-CFEu) nanoparticle was produced for use as a bioimaging probe. Its notable multifunctional, fluorescence and imaging properties, allows rapid screening of future drug biodistribution. Decoration of the Si-CFEu particles with folic acid increased its sensitivity and specificity for magnetic resonance imaging over a more conventional ultrasmall superparamagnetic iron oxide particles. The future use of these particles in theranostic tests will serve as a platform for designing improved drug delivery strategies to combat inflammatory and infectious diseases.


Subject(s)
Cobalt/chemistry , Europium/chemistry , Ferric Compounds/chemistry , Magnetic Resonance Imaging , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Endocytosis , Folic Acid/chemistry , Humans , Immunohistochemistry , Macrophages/metabolism , Macrophages/ultrastructure , Male , Microscopy, Atomic Force , Microscopy, Confocal , Monocytes/cytology , Nanoparticles/toxicity , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Tissue Distribution
18.
Nanomedicine (Lond) ; 12(2): 99-115, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27879160

ABSTRACT

AIM: Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized. MATERIALS & METHODS: A mannose-anchored thiolated chitosan nanocarrier was manufactured and characterized. MTC AmB was examined for cytotoxicity, biocompatibility, uptake and antimicrobial activities. RESULTS: MTC AmB was rod shaped with a size of 362 nm. MTC AmB elicited 90% macrophage viability and 71-fold enhancement in drug uptake compared with native drug. The antileishmanial IC50 for MTC AmB was 0.02 µg/ml compared with 0.26 µg/ml for native drug. CONCLUSION: These studies show that MTC can serve as a platform for clearance of Leishmania in macrophages.


Subject(s)
Amphotericin B/chemistry , Amphotericin B/therapeutic use , Leishmaniasis, Visceral/drug therapy , Mannose/chemistry , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Cell Line , Chitosan/chemistry , Humans , Leishmania donovani/drug effects , Macrophages/drug effects , Macrophages/parasitology , Mice , Nanoparticles
19.
PLoS One ; 10(12): e0145966, 2015.
Article in English | MEDLINE | ID: mdl-26716700

ABSTRACT

Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV). Local inflammatory responses heralded drug distribution to peritoneal cell populations, regional lymph nodes, spleen and liver. This proceeded for three days in male Balb/c mice. NanoATV-induced changes in myeloid populations were assessed by fluorescence-activated cell sorting (FACS) with CD45, CD3, CD11b, F4/80, and GR-1 antibodies. The localization of nanoATV within leukocyte cell subsets was determined by confocal microscopy. Combined FACS and ultra-performance liquid chromatography tandem mass-spectrometry assays determined nanoATV carriages by cell-based vehicles. A robust granulocyte, but not peritoneal macrophage nanoATV response paralleled zymosan A treatment. ATV levels were highest at sites of injection in peritoneal or muscle macrophages, dependent on the injection site. The spleen and liver served as nanoATV tissue depots while drug levels in lymph nodes were higher than those recorded in plasma. Dual polymer and cell labeling demonstrated a nearly exclusive drug reservoir in macrophages within the liver and spleen. Overall, nanoART induces innate immune responses coincident with rapid tissue macrophage distribution. Taken together, these works provide avenues for therapeutic development designed towards chemical eradication of human immunodeficiency viral infection.


Subject(s)
Atazanavir Sulfate/administration & dosage , Drug Carriers/administration & dosage , HIV Protease Inhibitors/administration & dosage , Nanoparticles/administration & dosage , Animals , Atazanavir Sulfate/pharmacokinetics , Chemistry, Pharmaceutical , Delayed-Action Preparations/pharmacokinetics , Drug Carriers/pharmacokinetics , Drug Delivery Systems , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacokinetics , Humans , Immunity, Innate , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Tissue Distribution
20.
Curr Med Chem ; 21(36): 4186-98, 2014.
Article in English | MEDLINE | ID: mdl-25174930

ABSTRACT

Human immunodeficiency virus (HIV) infection commonly results in a myriad of comorbid conditions secondary to immune deficiency. Infection also affects broad organ system function. Although current antiretroviral therapy (ART) reduces disease morbidity and mortality through effective control of peripheral viral load, restricted infection in HIV reservoirs including gut, lymphoid and central nervous system tissues, is not eliminated. What underlies these events is, in part, poor ART penetrance into each organ across tissue barriers, viral mutation and the longevity of infected cells. We posit that one means to improve these disease outcomes is through nanotechnology. To this end, this review discusses a broad range of cutting-edge nanomedicines and nanomedicine platforms that are or can be used to improve ART delivery. Discussion points include how polymer-drug conjugates, dendrimers, micelles, liposomes, solid lipid nanoparticles and polymeric nanoparticles can be harnessed to best yield cell-based delivery systems. When completely developed, such nanomedicine platforms have the potential to clear reservoirs of viral infection.


Subject(s)
Anti-HIV Agents/administration & dosage , Drug Carriers/chemistry , HIV Infections/drug therapy , Nanomedicine , Anti-HIV Agents/chemistry , Cell- and Tissue-Based Therapy , Dendrimers/chemistry , Humans , Liposomes/chemistry , Micelles , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...