Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Small ; : e2405558, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279332

ABSTRACT

The transition to sustainable materials and eco-efficient processes in commercial electronics is a driving force in developing green electronics. Iron-catalyzed laser-induced graphitization (IC-LIG) has been demonstrated as a promising approach for rendering biomaterials electrically conductive. To optimize the IC-LIG process and fully exploit its potential for future green electronics, it is crucial to gain deeper insights into its catalyzation mechanism and structural evolution. However, this is challenging due to the rapid nature of the laser-induced graphitization process. Therefore, multiscale preparation techniques, including ultramicrotomy of the cross-sectional transition zone from precursor to fully graphitized IC-LIG electrode, are employed to virtually freeze the IC-LIG process in time. Complementary characterization is performed to generate a 3D model that integrates nanoscale findings within a mesoscopic framework. This enabled tracing the growth and migration behavior of catalytic iron nanoparticles and their role during the catalytic laser-graphitization process. A three-layered arrangement of the IC-LIG electrode is identified including a highly graphitized top layer with an interplanar spacing of 0.343 nm. The middle layer contained γ-iron nanoparticles encapsulated in graphitic shells. A comparison with catalyst-free laser graphitization approaches highlights the unique opportunities that IC-LIG offers and discuss potential applications in energy storage devices, catalysts, sensors, and beyond.

3.
Biomacromolecules ; 25(3): 1933-1941, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38324476

ABSTRACT

Nanocellulose-based membranes have attracted intense attention in bioelectronic devices due to their low cost, flexibility, biocompatibility, degradability, and sustainability. Herein, we demonstrate a flexible ionic diode using a cross-linked bipolar membrane fabricated from positively and negatively charged cellulose nanofibrils (CNFs). The rectified current originates from the asymmetric charge distribution, which can selectively determine the direction of ion transport inside the bipolar membrane. The mechanism of rectification was demonstrated by electrochemical impedance spectroscopy with voltage biases. The rectifying behavior of this kind of ionic diode was studied by using linear sweep voltammetry to obtain current-voltage characteristics and the time dependence of the current. In addition, the performance of cross-linked CNF diodes was investigated while changing parameters such as the thickness of the bipolar membranes, the scanning voltage range, and the scanning rate. A good long-term stability due to the high density cross-linking of the diode was shown in both current-voltage characteristics and the time dependence of current.


Subject(s)
Cellulose , Ions , Membranes
4.
Glob Chall ; 7(4): 2200235, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37020627

ABSTRACT

Wood is an inherently hygroscopic material which tends to absorb moisture from its surrounding. Moisture in wood is a determining factor for the quality of wood being employed in construction, since it causes weakening, deformation, rotting, and ultimately leading to failure of the structures resulting in costs to the economy, the environment, and to the safety of residents. Therefore, monitoring moisture in wood during the construction phase and after construction is vital for the future of smart and sustainable buildings. Employing bio-based materials for the construction of electronics is one way to mitigate the environmental impact of such electronics. Herein, a bio-graphene sensor for monitoring the moisture inside and around wooden surfaces is fabricated using laser-induced graphitization of a lignin-based ink precursor. The bio-graphene sensors are used to measure humidity in the range of 10% up to 90% at 25 °C. Using laser induced graphitization, conductor resistivity of 18.6 Ω sq-1 is obtained for spruce wood and 57.1 Ω sq-1 for pine wood. The sensitivity of sensors fabricated on spruce and pine wood is 2.6 and 0.74 MΩ per % RH. Surface morphology and degree of graphitization are investigated using scanning electron microscopy, Raman spectroscopy, and thermogravimetric analysis methods.

5.
ACS Appl Mater Interfaces ; 14(50): 55850-55863, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36508553

ABSTRACT

Printed paper-based electronics offers solutions to rising energy concerns by supplying flexible, environmentally friendly, low-cost infrastructure for portable and wearable electronics. Herein, we demonstrate a scalable spray-coating approach to fabricate tailored paper poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/cellulose nanofibril (CNF) electrodes for all-printed supercapacitors. Layer-by-layer spray deposition was used to achieve high-quality electrodes with optimized electrode thickness. The morphology of these electrodes was analyzed using advanced X-ray scattering methods, revealing that spray-coated electrodes have smaller agglomerations, resulting in a homogeneous film, ultimately suggesting a better electrode manufacturing method than drop-casting. The printed paper-based supercapacitors exhibit an areal capacitance of 9.1 mF/cm2, which provides enough energy to power electrochromic indicators. The measured equivalent series resistance (ESR) is as low as 0.3 Ω, due to improved contact and homogeneous electrodes. In addition, a demonstrator in the form of a self-powered wearable wristband is shown, where a large-area (90 cm2) supercapacitor is integrated with a flexible solar cell and charged by ambient indoor light. This demonstration shows the tremendous potential for sequential coating/printing methods in the scaling up of printed wearables and self-sustaining systems.

6.
Glob Chall ; 6(10): 2200058, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36275357

ABSTRACT

Triboelectric nanogenerators (TENGs) are a new class of energy harvesting devices that have the potential to become a dominating technology for producing renewable energy. The versatility of their designs allows TENGs to harvest mechanical energy from sources like wind and water. Currently used renewable energy technologies have a restricted number of materials from which they can be constructed, such as metals, plastics, semiconductors, and rare-earth metals. These materials are all non-renewable in themselves as they require mining/drilling and are difficult to recycle at end of life. TENGs on the other hand can be built from a large repertoire of materials, including materials from bio-based sources. Here, a TENG constructed fully from wood-derived materials like lignin, cellulose, paper, and cardboard, thus making it 100% green, recyclable, and even biodegradable, is demonstrated. The device can produce a maximum voltage, current, and power of 232 V, 17 mA m-2, and 1.6 W m-2, respectively, which is enough to power electronic systems and charge 6.5 µF capacitors. Finally, the device is used in a smart package application as a self-powered impact sensor. The work shows the feasibility of producing renewable energy technologies that are sustainable both with respect to their energy sources and their material composition.

7.
Carbohydr Polym ; 278: 118938, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973756

ABSTRACT

Ion selective membranes are at the heart of energy conversion and harvesting, water treatment, and biotechnologies. The currently available membranes are mostly based on expensive and non-biodegradable polymers. Here, we report a cation-selective and low-cost membrane prepared from renewable nanocellulose and 1,2,3,4-butanetetracarboxylic acid which simultaneously serves as crosslinker and source of anionic surface groups. Charge density and structure of the membranes are studied. By using different degrees of crosslinking, simultaneous control over both the nanochannel structure and surface charge concentration is achieved, which in turn determines the resulting ion transport properties. Increasing negative charge concentration via higher crosslinker content, the obtained ion conductivity reaches up to 8 mS/cm (0.1 M KCl). Optimal ion selectivity, also influenced by the solution pH, is achieved at 20 wt% crosslinker addition (with ion conductivity of 1.6 mS/cm). As regular ~1.4 nm nanochannels were formed at this composition, nanofluidic contribution to ion transport is likely.


Subject(s)
Cellulose/chemistry , Cross-Linking Reagents/chemistry , Nanostructures/chemistry , Butanes/chemistry , Carboxylic Acids/chemistry , Electric Conductivity , Ion Transport
8.
Adv Mater ; 33(33): e2102451, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34219300

ABSTRACT

Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production. Here, a novel method is presented to generate structural color images based on monochromic conducting polymer films prepared on metallic surfaces via vapor phase polymerization and ultraviolet (UV) light patterning. Varying the UV dose enables synergistic control of both nanoscale film thickness and polymer permittivity, which generates controllable structural colors from violet to red. Together with grayscale photomasks this enables facile fabrication of high-resolution structural color images. Dynamic tuning of colored surfaces and images via electrochemical modulation of the polymer redox state is further demonstrated. The simple structure, facile fabrication, wide color gamut, and dynamic color tuning make this concept competitive for applications like multifunctional displays.

9.
Polymers (Basel) ; 11(2)2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30960251

ABSTRACT

Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

10.
Adv Sci (Weinh) ; 3(2): 1500305, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27774392

ABSTRACT

A mixed ionic-electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio-phene):-poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

11.
Adv Mater ; 28(22): 4556-62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26836440

ABSTRACT

Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

SELECTION OF CITATIONS
SEARCH DETAIL