Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Med Image Anal ; 18(2): 359-73, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24418598

ABSTRACT

Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p<0.05) and had an efficient implementation with a run time of 8min and 3s per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/standards , Prostatic Neoplasms/radiotherapy , Artifacts , Humans , Imaging, Three-Dimensional , Male , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
2.
Comput Med Imaging Graph ; 37(2): 83-97, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23632059

ABSTRACT

Mixed reality environments for medical applications have been explored and developed over the past three decades in an effort to enhance the clinician's view of anatomy and facilitate the performance of minimally invasive procedures. These environments must faithfully represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical instrument tracking, and display technology into a common framework centered around and registered to the patient. However, in spite of their reported benefits, few mixed reality environments have been successfully translated into clinical use. Several challenges that contribute to the difficulty in integrating such environments into clinical practice are presented here and discussed in terms of both technical and clinical limitations. This article should raise awareness among both developers and end-users toward facilitating a greater application of such environments in the surgical practice of the future.


Subject(s)
Computer Graphics , Image Interpretation, Computer-Assisted/methods , Minimally Invasive Surgical Procedures/methods , Software , Surgery, Computer-Assisted/methods , Translational Research, Biomedical/methods , User-Computer Interface , Environment
3.
Comput Med Imaging Graph ; 37(2): 183-94, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23428829

ABSTRACT

A fundamental challenge in the development of image-guided surgical systems is alignment of the preoperative model to the operative view of the patient. This is achieved by finding corresponding structures in the preoperative scans and on the live surgical scene. In robot-assisted laparoscopic prostatectomy (RALP), the most readily visible structure is the bone of the pelvic rim. Magnetic resonance imaging (MRI) is the modality of choice for prostate cancer detection and staging, but extraction of bone from MRI is difficult and very time consuming to achieve manually. We present a robust and fully automated multi-atlas pipeline for bony pelvis segmentation from MRI, using a MRI appearance embedding statistical deformation model (AE-SDM). The statistical deformation model is built using the node positions of deformations obtained from hierarchical registrations of full pelvis CT images. For datasets with corresponding CT and MRI images, we can transform the MRI into CT SDM space. MRI appearance can then be used to improve the combined MRI/CT atlas to MRI registration using SDM constraints. We can use this model to segment the bony pelvis in a new MRI image where there is no CT available. A multi-atlas segmentation algorithm is introduced which incorporates MRI AE-SDMs guidance. We evaluated the method on 19 subjects with corresponding MRI and manually segmented CT datasets by performing a leave-one-out study. Several metrics are used to quantify the overlap between the automatic and manual segmentations. Compared to the manual gold standard segmentations, our robust segmentation method produced an average surface distance 1.24±0.27mm, which outperforms state-of-the-art algorithms for MRI bony pelvis segmentation. We also show that the resulting surface can be tracked in the endoscopic view in near real time using dense visual tracking methods. Results are presented on a simulation and a real clinical RALP case. Tracking is accurate to 0.13mm over 700 frames compared to a manually segmented surface. Our method provides a realistic and robust framework for intraoperative alignment of a bony pelvis model from diagnostic quality MRI images to the endoscopic view.


Subject(s)
Magnetic Resonance Imaging/methods , Models, Anatomic , Pelvic Bones/pathology , Prostatectomy/methods , Robotics/methods , Subtraction Technique , Surgery, Computer-Assisted/methods , Artificial Intelligence , Computer Simulation , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Reproducibility of Results , Sensitivity and Specificity
4.
Article in English | MEDLINE | ID: mdl-24505647

ABSTRACT

Reconstructing the depth of stereo-endoscopic scenes is an important step in providing accurate guidance in robotic-assisted minimally invasive surgery. Stereo reconstruction has been studied for decades but remains a challenge in endoscopic imaging. Current approaches can easily fail to reconstruct an accurate and smooth 3D model due to textureless tissue appearance in the real surgical scene and occlusion by instruments. To tackle these problems, we propose a dense stereo reconstruction algorithm using convex optimisation with a cost-volume to efficiently and effectively reconstruct a smooth model while maintaining depth discontinuity. The proposed approach has been validated by quantitative evaluation using simulation and real phantom data with known ground truth. We also report qualitative results from real surgical images. The algorithm outperforms state of the art methods and can be easily parallelised to run in real-time on recent graphics hardware.


Subject(s)
Algorithms , Endoscopy/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Robotics/methods , Surgery, Computer-Assisted/methods , Computer Systems , Endoscopy/instrumentation , Humans , Image Enhancement/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...