Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Chem ; 15(12): 1780-1786, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37640854

ABSTRACT

Although Cu2+ is ubiquitous, the relativistic destabilization of the 5d orbitals makes the isoelectronic Au2+ exceedingly rare, typically stabilized only through Au-Au bonding or by using redox non-innocent ligands. Here we report the perovskite Cs4AuIIAuIII2Cl12, an extended solid with mononuclear Au2+ sites, which is stable to ambient conditions and characterized by single-crystal X-ray diffraction. The 2+ oxidation state of Au was assigned using 197Au Mössbauer spectroscopy, electron paramagnetic resonance, and magnetic susceptibility measurements, with comparison to paramagnetic and diamagnetic analogues with Cu2+ and Pd2+, respectively, as well as to density functional theory calculations. This gold perovskite offers an opportunity to study the optical and electronic transport of the uncommon Au2+/3+ mixed-valence state and the characteristics of the elusive Au2+ ion coordinated to simple ligands. Compared with the perovskite Cs2AuIAuIIICl6, which has been studied since the 1920s, Cs4AuIIAuIII2Cl12 exhibits a 0.7 eV reduction in optical absorption onset and a 103-fold increase in electronic conductivity.

2.
J Phys Condens Matter ; 34(29)2022 05 24.
Article in English | MEDLINE | ID: mdl-35510713

ABSTRACT

Spatial models where growth is limited to the population edge have been instrumental to understanding the population dynamics and the clone size distribution in growing cellular populations, such as microbial colonies and avascular tumours. A complete characterization of the coalescence process generated by spatial growth is still lacking, limiting our ability to apply classic population genetics inference to spatially growing populations. Here, we start filling this gap by investigating the statistical properties of the cell lineages generated by the two dimensional Eden model, leveraging their physical analogy with directed polymers. Our analysis provides quantitative estimates for population measurements that can easily be assessed via sequencing, such as the average number of segregating sites and the clone size distribution of a subsample of the population. Our results not only reveal remarkable features of the genealogies generated during growth, but also highlight new properties that can be misinterpreted as signs of selection if non-spatial models are inappropriately applied.


Subject(s)
Genetics, Population , Models, Genetic , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL