Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 392: 109-117, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996920

ABSTRACT

Enterococcus faecalis is a versatile lactic acid bacterium with a large variety of implications for humans. While some strains of this species are pathobionts being resistant against most of the common antibiotics, other strains are regarded as biological protectants or even probiotics. Accordingly, E. faecalis strains largely differ in the size and content of their accessory genome. In this study, we describe the genome-scale metabolic network reconstruction of E. faecalis ATCC 19433, a non-resistant human-associated strain. A comparison of the genome-scale metabolic model (GSM) of E. faecalis ATCC 19433 with a previously published GSM of the multi-resistant pathobiontic E. faecalis V583 reveals high similarities in the central metabolic abilities of these two human associated strains. This is reflected, e.g., in the identical amino acid auxotrophies. The ATCC 19433 strain, however, has a 14.1 % smaller genome than V583 and lacks the multiple antibiotic resistance genes and genes involved in capsule formation. Based on the measured metabolic fluxes at different growth rates, the energy demand at zero growth was calculated to be about 40 % lower for the ATCC 19433 strain compared to V583. Furthermore, the ATCC 19433 strain seems less prone to the depletion of amino acids utilizable for energy metabolism. This might hint at a lower overall energy demand of the ATCC 19433 strain as compared to V583.

2.
Front Microbiol ; 13: 802427, 2022.
Article in English | MEDLINE | ID: mdl-35242116

ABSTRACT

The strict human pathogen Streptococcus pyogenes causes infections of varying severity, ranging from self-limiting suppurative infections to life-threatening diseases like necrotizing fasciitis or streptococcal toxic shock syndrome. Here, we show that the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase GapN is an essential enzyme for S. pyogenes. GapN converts glyceraldehyde 3-phosphate into 3-phosphoglycerate coupled to the reduction of NADP to NADPH. The knock-down of gapN by antisense peptide nucleic acids (asPNA) significantly reduces viable bacterial counts of S. pyogenes laboratory and macrolide-resistant clinical strains in vitro. As S. pyogenes lacks the oxidative part of the pentose phosphate pathway, GapN appears to be the major NADPH source for the bacterium. Accordingly, other streptococci that carry a complete pentose phosphate pathway are not prone to asPNA-based gapN knock-down. Determination of the crystal structure of the S. pyogenes GapN apo-enzyme revealed an unusual cis-peptide in proximity to the catalytic binding site. Furthermore, using a structural modeling approach, we correctly predicted competitive inhibition of S. pyogenes GapN by erythrose 4-phosphate, indicating that our structural model can be used for in silico screening of specific GapN inhibitors. In conclusion, the data provided here reveal that GapN is a potential target for antimicrobial substances that selectively kill S. pyogenes and other streptococci that lack the oxidative part of the pentose phosphate pathway.

SELECTION OF CITATIONS
SEARCH DETAIL