Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124746, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955065

ABSTRACT

Organic materials have several important characteristics that make them suitable for use in optoelectronics and optical signal processing applications. For absorption and emission maxima, the stabilities and photoactivities of conjugated organic chromophores can be tailored by selecting a suitable parent structure and incorporating substituents that predictably change the optical characteristics. However, a high-throughput design of efficient conjugated organic chromophores without using trial-and-error experimental approaches is required. In this study, machine learning (ML) is used to design and test the conjugated organic chromophores and predict light absorption and emission behavior. Many machine learning models are tried to select the best models for the prediction of absorption and emission maxima. Extreme gradient boosting regressor has appeared as the best model for the prediction of absorption maxima. Random forest regressor stands out as the best model for the prediction of emission maxima. Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) is used to generate 10,000 organic chromophores. Chemical similarity analysis is performed to obtain a deeper understanding of the characteristics and actions of compounds. Furthermore, clustering and heatmap approaches are utilized.

2.
ACS Omega ; 9(22): 23782-23792, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854584

ABSTRACT

In this study, we conducted first-principles calculations interfaced with Boltzmann transport theory to examine the carrier-dependent thermoelectric properties of CrS2-x Te x (x: 0, 1, 2) dichalcogenides monolayers. We conducted a systematic analysis of the structural, phonon band structures, elastic properties, electronic structures, and thermoelectric properties, of electron (e) and hole (h) doped CrS2-x Te x (x: 0, 1, 2) dichalcogenides monolayers. The studied 2D TMDCs exhibit structural stability, as indicated by the negative formation energy. Additionally, the phonon band structures indicate no negative frequencies along any wave vector, confirming the dynamic stability of the CrS2-x Te x monolayers. CrS2 and CrTe2 monolayers are semiconductors with direct bandgaps of 1.01 and 0.67 eV, respectively. A Janus CrSTe monolayer has a smaller bandgap of 0.21 eV. Temperatures range between 300 and 500 K, and concentrations of e(h) doped in the range of 1.0 × 1018-1.0 × 1020 cm-3 are used to compute the thermoelectric transport coefficients. The low lattice thermal conductivity is predicted for the studied compounds, among which Janus CrSTe and CrTe2 have the minimum value of κlat ≈ 1 W/mK @ 700 K. The figure-of-merit ZT projected value at the optimal e(h) doping concentration for the CrS2 monolayer is as high as 0.07 (0.09) at 500 K. Our findings demonstrate how to design improved thermoelectric materials suitable for various thermoelectric devices.

3.
Biosens Bioelectron ; 261: 116498, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38878697

ABSTRACT

The World Anti-Doping Agency (WADA) has prohibited the use of clenbuterol (CLN) because it induces anabolic muscle growth while potentially causing adverse effects such as palpitations, anxiety, and muscle tremors. Thus, it is vital to assess meat quality because, athletes might have positive test for CLN even after consuming very low quantity of CLN contaminated meat. Numerous materials applied for CLN monitoring faced potential challenges like sluggish ion transport, non-uniform ion/molecule movement, and inadequate electrode surface binding. To overcome these shortcomings, herein we engineered bimetallic zeolitic imidazole framework (BM-ZIF) derived N-doped porous carbon embedded Co nanoparticles (CN-CoNPs), dispersed on conductive cellulose acetate-polyaniline (CP) electrospun nanofibers for sensitive electrochemical monitoring of CLN. Interestingly, the smartly designed CN-CoNPs wrapped CP (CN-CoNPs-CP) electrospun nanofibers offers rapid diffusion of CLN molecules to the sensing interface through amine and imine groups of CP, thus minimizing the inhomogeneous ion transportation and inadequate electrode surface binding. Additionally, to synchronize experiments, machine learning (ML) algorithms were applied to optimize, predict, and validate voltametric current responses. The ML-trained sensor demonstrated high selectivity, even amidst interfering substances, with notable sensitivity (4.7527 µA/µM/cm2), a broad linear range (0.002-8 µM), and a low limit of detection (1.14 nM). Furthermore, the electrode exhibited robust stability, retaining 98.07% of its initial current over a 12-h period. This ML-powered sensing approach was successfully employed to evaluate meat quality in terms of CLN level. To the best of our knowledge, this is the first study of using ML powered system for electrochemical sensing of CLN.


Subject(s)
Biosensing Techniques , Cellulose , Clenbuterol , Cobalt , Machine Learning , Nanofibers , Clenbuterol/analysis , Nanofibers/chemistry , Biosensing Techniques/methods , Cellulose/chemistry , Cellulose/analogs & derivatives , Cobalt/chemistry , Animals , Meat/analysis , Metal Nanoparticles/chemistry , Aniline Compounds/chemistry , Electrochemical Techniques/methods , Food Contamination/analysis , Food Analysis/methods , Food Analysis/instrumentation , Limit of Detection , Carbon/chemistry
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124551, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823246

ABSTRACT

Relationship between excited state dynamics and nonlinear optical (NLO) parameters is very unique. Herein, three different polyoxometalates (POMs) namely WD-POM (Wells-Dawson POM) based porphyrin hybrids WDPOM3PyP, Trans-2WDPOM2PyP, and 3WDPOMPyP (having one, two, and three WD-POM respectively), and their porphyrin precursors with (Trishydroxyl amino methane) namely Tris3PyP, Trans-2Tris2PyP, and 3TrisPyP respectively have been used for the study. Fluorescence decay and Z-scan studies by using nanosecond (ns) time span conveys the corresponding lifespan for each excited state, along with the NLO analysis respectively. The calculated lifetime data were found in the range of 3WDPOMPyP (τ1 = 5.65 ns), Trans-2WDPOM2PyP (τ1 = 2.21 ns), and WDPOM3PyP (τ1 = 1.96 ns). Third order NLO measurements represented that WDPOM3PyP showed better NLO response (χ3 = 2.26 × 10-10esu and ß = 1.54 × 10-5 esu) as compared to Trans-2WDPOM2PyP (χ3 = 1.73 × 10-10 esu and ß = 1.53 × 10-5 esu), and 3WDPOMPyP (χ3 = 1.55 × 10-10 esu and ß = 0.65 × 10-5 esu) obtained at wavelength of 532 nm. Electrochemical studies have shown that the minor energy differences between the singlet and triplet excited states are responsible for intercrossing system (ISC) that helps in the transfer of electrons from porphyrin moiety to WD-POM. By absorbing a photon, the excited species were produced causing an initial charge transfer. This charge transfer state undergoes an electron transfer decaying to the lowest triplet state, and singlet state causing an increase in NLO. The obtained results indicated potential uses in photonic and all-optical switching devices.

5.
Dalton Trans ; 53(26): 10875-10889, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874545

ABSTRACT

Electrocatalytic hydrogen generation in alkaline medium has become widely used in a variety of sectors. However, the possibility for additional performance improvement is hampered by slow kinetics. Because of this restriction, careful control over processes such as water dissociation, hydroxyl desorption and hydrogen recombination is required. Covalent organic frameworks (COFs) based on porphyrin and polyoxometalates (POMs) show encouraging electrocatalytic performance, offering a viable route for effective and sustainable hydrogen generation. Their specific architectures lead to increased electrocatalytic activity, which makes them excellent choices for developing water electrolysis as a clean energy conversion method in the alkaline medium. In this regard, TTris@ZnPor and Lindqvist POM were coordinated to create a new eco-friendly and highly active covalent organic framework (TP@VL-COF). In order to describe TP@VL-COF, extensive structural and morphological investigations were carried out through FTIR, 1H NMR, elemental analysis, SEM, fluorescence, UV-visible, PXRD, CV, N2-adsorption isotherm, TGA and DSC analyses. In an alkaline medium, the electrocatalytic capability of 20%C/Pt, TTris@ZnPor, Lindqvist POM and TP@VL-COF was explored and compared for the hydrogen evolution reaction (HER). The TP@VL-COF showed the best catalytic efficiency for HER in an alkaline electrolyte, requiring just a 75 mV overpotential to drive 10 mA cm-2 and outperforming 20%C/Pt, TTris@ZnPor, Lindqvist POM and other reported catalysts. The Tafel slope value also indicates faster kinetics for TP@VL-COF (114 mV dec-1) than for 20%C/Pt (182 mV dec-1) TTris@ZnPor (116 mV dec-1) and Lindqvist POM (125 mV dec-1).

6.
Heliyon ; 10(10): e30927, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38779003

ABSTRACT

The purpose of this study was to synthesize ecofriendly nano-composite in which agricultural waste (seeds of Tamarindus indica) was used to synthesize tamarind seed polysaccharides (TSP) and its composite with copper nanoparticles (Cu-NPs) for the purpose of green and clean environment as well as reduction of green-house gases. Confirmation of extracted TSP, synthesized nanocomposite was carried out using FTIR, SEM, PXRD and EDX techniques. In FTIR analysis TSP gives a strong broad peak at 3331 cm-1 due to -OH group and in case of composite its intensity is reduced which might be due to the interactions between -OH and Cu+2 ions. SEM analysis gives that TSP have irregular and rough surface while Cu-NPs exhibited spherical morphology and composite showed clustering of spherical shape to rough surface. EDX analysis quantitatively represented copper having atomic ratio 0.57 % which confirms the synthesis of composite. Furthermore, synthesized composite demonstrated excellent antibacterial activity against gram-positive (S.aureus) and gram-negative bacteria (E.coli) even greater than standard medicine (ciprofloxacin). From this study it was revealed that agriculture waste can be utilized to make environment green as well as synthesized composite from agricultural waste seed also displayed excellent antimicrobial activities which directs that they can be utilized in medical field. This study aims to assess the antimicrobial properties of the nanocomposite, aiming to contribute to the development of effective antimicrobial agents. Through these objectives, the research seeks to bridge the gap between green technology and antimicrobial efficacy, offering a promising avenue for both environmental conservation and healthcare advancements.

7.
Nanomicro Lett ; 16(1): 195, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743205

ABSTRACT

A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.

8.
RSC Adv ; 14(19): 13605-13617, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665498

ABSTRACT

The structural, electronic, and magnetic properties of novel half-Heusler alloys ScXGe (X = Mn, Fe) are investigated using the first principle full potential linearized augmented plane wave approach based on density functional theory (DFT). To attain the desired outcomes, we employed the exchange-correlation frameworks, specifically the local density approximation in combination with Perdew, Burke, and Ernzerhof's generalized gradient approximation plus the Hubbard U parameter method (GGA + U) to highlight the strong exchange-correlation interaction in these alloys. The structural parameter optimizations, whether ferromagnetic (FM) or nonmagnetic (NM), reveal that all ScXGe (where X = Mn, Fe) Heusler alloys attain their lowest ground state energy during FM optimization. The examination of the electronic properties of these alloys reveals their metallic character in both the spin-up and spin-down channels. The projected densities of states indicate that bonding is achieved through the hybridization of p-d and d-d states in all of the compounds. The investigation of the magnetic properties in ScXGe (where X = Mn, Fe) compounds indicates pronounced stability in their ferromagnetic state. Notably, the Curie temperatures for ScXGe (X = Mn, Fe) are determined to be 2177.02 K and 1656.09 K, respectively. The observation of metallic behavior and the strong ferromagnetic characteristics in ScXGe (X = Mn, Fe) half-Heusler alloys underscores their potential significance in the realm of spintronic devices. Consequently, our study serves as a robust foundation for subsequent experimental validation.

9.
Int J Biol Macromol ; 263(Pt 2): 129803, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296147

ABSTRACT

Acid polysaccharide was extracted from Salvia przewalskii root powders (PSP), purified by diethylaminoethyl cellulose column (DEAE-52) and molecular sieve (PSP2). PSPm1 was obtained by modifying PSP2 with nitrite and phosphoric acid. The chemical structure of PSP2 and PSPm1 exhibited notable distinctions, primarily due to the absence of arabinose and promotion of glucuronic acid (GlcA). The structure of PSPm1 was deduced through the utilization of 1H, 13C, and 2-D NMR. The main chain was linked by α-D-Galp(1 â†’ 3)-α-Glcp-(1 â†’ fragments and →6)-ß-D-Galp fragments, with the presence of →4)-α-D-GlcpA-(1 â†’ 6)-ß-D-Galp-(1 â†’ ï¼Œ â†’ 4)-α-D-GalAp-(1 â†’ 2,4)-α-D-Rhap-(1 â†’ fragments and →6)-α-Glcp-(1 â†’ 2,4)-ß-D-Manp-(1 â†’ fragments. PSPm1 exhibited different immunoregulatory bioactivity in vitro, including haemostatic effects indicated by activated clotting time of 55.5 % reduction by the activated clotting time (ACT) test and wound healing function in vivo. PSPm1 also displayed better anti-tumor biological effects than unmodified. The structure-activity dissimilarity between PSP2 and PSPm1 primarily stems from variations in molecular weight (Mw), monosaccharide composition, and branching patterns. The modification of polysaccharides from the extract residues of Chinese medicinal materials may be a new form of drug supplements.


Subject(s)
Monosaccharides , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Monosaccharides/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight
10.
Int J Biol Macromol ; 259(Pt 1): 129221, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191115

ABSTRACT

In the present investigation a novel, environmentally affable and economical, modified gellan gum nanocomposite (MAA-g-GG/Ppy/MMT) was fabricated via free-radical polymerization for the liquid-phase mitigation of Methylene blue (MB) and Malachite green (MG) dyes. The innovation of this work is substantiated by the intentional combination of diverse materials, the strategic incorporation of polypyrrole for enhanced adsorption, and the thoughtful addition of MMT as a nanofiller to address mechanical strength and improve adsorption capacity. The physico-chemical facets of MAA-g-GG/Ppy/MMT and its interaction with the dye molecules were elucidated using FT-IR, SEM-EDX, BET, TEM, and XRD techniques. The optimum conditions for the sorption of MB and MG were deemed to be dosage (1.2 g/L for both dyes), contact time (50 min for both dyes), initial MG/MB concentration (MB = 40 mg/L & MG = 30 mg/L), and pH (MB = 10 & MG = 7). The Freundlich isotherm was identified as the most suitable model, as evidenced by the highest R2 value (∼0.999), indicating multilayer adsorption. The pseudo second-order model appraised the kinetic data. Thermodynamic findings revealed the adsorption process to be spontaneous, viable and exothermic which was ascertained by negative ∆H⸰ values (-22.8 kJ/mol for MB and -18.3 kJ/mol for MG). The substantial Langmuir adsorption capacity (Qm: MG =185.185; MB = 344.827) can be ascribed to the reason for strong interactions between MAA-g-GG/Ppy/MMT and dyes. The high reliability of MAA-g-GG/Ppy/MMT was determined by the regeneration studies that worked up to four cycles for both dyes. The real water (distilled water, tap water, and river water) samples spiked with MG/MB demonstrated a substantial uptake of dyes (>85 %) and the marginal influence of ionic strength on the adsorptive potential of MAA-g-GG/Ppy/MMT validated its efficacy for the decontamination of real effluents. The forces of attraction between the dyes and MAA-g-GG/Ppy/MMT included van der Waals, electrostatic forces of attraction, and π-π interaction. This green, economical, and viable MAA-g-GG/Ppy/MMT will prove to be an efficient adsorbent for the decontamination process of sequestration of dyes to achieve a sustainable environment.


Subject(s)
Nanocomposites , Polysaccharides, Bacterial , Rosaniline Dyes , Water Pollutants, Chemical , Methylene Blue/chemistry , Polymers , Adsorption , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Pyrroles , Coloring Agents/chemistry , Nanocomposites/chemistry , Kinetics , Water , Hydrogen-Ion Concentration
11.
Int J Biol Macromol ; 257(Pt 1): 128588, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048922

ABSTRACT

This study focuses on the characterization and regulation of glycolipid metabolism of polysaccharides derived from biomass of Phyllostachys nigra (Lodd. ex Lindl.) root (PNr). The extracts from dilute hydrochloric acid, hot water, and 2 % sodium hydroxide solution were characterized through molecular weight, gel permeation chromatography, monosaccharides, Fourier transform infrared, and nuclear magnetic resonance spectroscopy analyses. Polysaccharide from alkali extraction and molecular sieve purification (named as: PNS2A) exhibited optimal inhibitory of 3T3-L1 cellular differentiation and lowered insulin resistance. The PNS2A is made of a hemicellulose-like main chain of →4)-ß-D-Xylp-(1→ that was connected by branches of 4-O-Me-α-GlcAp-(1→, T-α-D-Galp-(1→, T-α-L-Araf-(1→, →2)-α-L-Araf-(1→, as well as ß-D-Glcp-(1→4-ß-D-Glcp-(1→ fragments. Oral delivery of PNS2A in diabetes mice brought down blood glucose and cholesterol levels and regulated glucose and lipid metabolism. PNS2A alleviated diabetes symptoms and body weight and protected liver and kidney function in model animals by altering the gut microbiome. Polysaccharides can be a new approach to develop bamboo resources.


Subject(s)
Diabetes Mellitus , Gastrointestinal Microbiome , Mice , Animals , Polysaccharides/chemistry , Monosaccharides/analysis , Glucose/analysis , Poaceae
12.
Antibiotics (Basel) ; 12(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37887182

ABSTRACT

Antibiotic resistance in uropathogens has increased substantially and severely affected treatment of urinary tract infections (UTIs). Lately, some new formulations, including meropenem/vaborbactam (MEV), ceftazidime/avibactam (CZA), and ceftolozane/tazobactam (C/T) have been introduced to treat infections caused by drug-resistant pathogens. This study was designed to screen Enterobacteriales isolates from UTI patients and to assess their antimicrobial resistance pattern, particularly against the mentioned (new) antibiotics. Phenotypic screening of extended-spectrum ß-lactamase (ESBL) and carbapenem resistance was followed by inhibitor-based assays to detect K. pneumoniae carbapenemase (KPC), metallo-ß-lactamase (MBL), and class D oxacillinases (OXA). Among 289 Enterobacteriales, E. coli (66.4%) was the most predominant pathogen, followed by K. pneumoniae (13.8%) and P. mirabilis (8.3%). The isolates showed higher resistance to penicillins and cephalosporins (70-87%) than to non-ß-lactam antimicrobials (33.2-41.5%). NDM production was a common feature among carbapenem-resistant (CR) isolates, followed by KPC and OXA. ESBL producers were susceptible to the tested new antibiotics, but NDM-positive isolates appeared resistant to these combinations. KPC-producers showed resistance to only C/T. ESBLs and carbapenemase encoding genes were located on plasmids and most of the genes were successfully transferred to recipient cells. This study revealed that MEV and CZA had significant activity against ESBL and KPC producers.

13.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37887946

ABSTRACT

Antigenic changes in surface proteins of the influenza virus may cause the emergence of new variants that necessitate the reformulation of influenza vaccines every year. Universal influenza vaccine that relies on conserved regions can potentially be effective against all strains regardless of any antigenic changes and as a result, it can bring enormous public health impact and economic benefit worldwide. Here, a conserved peptide (HA288-107) on the stalk domain of hemagglutinin glycoprotein is identified among highly pathogenic influenza viruses. Five top-ranked B-cell and twelve T-cell epitopes were recognized by epitope mapping approaches and the corresponding Human Leukocyte Antigen alleles to T-cell epitopes showed high population coverage (>99%) worldwide. Moreover, molecular docking analysis indicated that VLMENERTL and WTYNAELLV epitopes have high binding affinity to the antigen-binding groove of the HLA-A*02:01 and HLA-A*68:02 molecules, respectively. Theoretical physicochemical properties of the peptide were assessed to ensure its thermostability and hydrophilicity. The results suggest that the HA288-107 peptide can be a promising antigen for universal influenza vaccine design. However, in vitro and in vivo analyses are needed to support and evaluate the effectiveness of the peptide as an immunogen for vaccine development.

14.
Molecules ; 28(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894627

ABSTRACT

A significant issue in developing metal-catalyzed plastic polymer materials is obtaining distinctive catalytic characteristics to compete with current plastics in industrial commodities. We performed first-principle DFT calculations on the key insertion steps for industrially important monomers, vinyl fluoride (VF) and 3,3,3-trifluoropropene (TFP), to explain how the ligand substitution patterns affect the complex's polymerization behaviors. Our results indicate that the favorable 2,1-insertion of TFP is caused by less deformation in the catalyst moiety of the complexes in contrast to the 1,2-insertion mode. In contrast to the VF monomer, the additional interaction between the fluorine atoms of 3,3,3-trifluoropropene and the carbons of the catalyst ligands also contributed to favor the 2,1-insertion. It was found that the regioselectivity of the monomer was predominated by the progressive alteration of the catalytic geometry caused by small dihedral angles that were developed after the ligand-monomer interaction. Based on the distribution of the 1,2- and 2,1-insertion products, the activity and selectivity were influenced by the steric environment surrounding the palladium center; thus, an increased steric bulk visibly improved the selectivity of the bulkier polar monomer (TFP) during the copolymerization mechanism. In contrast, better activity was maintained through a sterically less hindered Pd metal center; the calculated moderate energy barriers showed that a catalyst with less steric hindrance might provide an opportunity for a wide range of prospective industrial applications.

15.
RSC Adv ; 13(38): 26766-26779, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37681049

ABSTRACT

We have designed and synthesized three pyrazole analogs (4, 5a, 5b), pyrazole-based chalcones (6a-6d) and (8a-8h), and N-formyl/acetyl 1,3,5-trisubstituted pyrazoline analogs (7a-7d), (9a-9d). FT-IR, 1H, 13C NMR, and mass spectrometry techniques were used to describe the structures of all the synthesized analogs. The single crystal X-ray method was used to identify the molecular structure of derivatives 4 and 5a. All synthesized analogs were screened by MTT assay on two cancer cell lines, the human lung cancer cell line (A549) and cervical cancer cell line (HeLa). Among all compounds, analog 9d demonstrates significant anticancer activity against HeLa (IC50 = 23.6 µM) and A549 (IC50 = 37.59 µM). The non-interactive interaction of active compound (9d) with Calf thymus DNA (Ct-DNA) has been investigated through various methods, such as UV-vis absorption, emission, cyclic voltammetry and circular dichroism. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical has been used to measure the antioxidant capacity of the pyrazoline derivative (9d). The outcomes showed that active analog has significant antioxidant activity. In addition, MD simulation of the EGFR tyrosine kinase protein-ligand complex was performed at a time scale of 100 ns. The MMGBSA data of ligand-protein complex are showed stable interactions up to 100 ns.

16.
Chemosphere ; 339: 139717, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541442

ABSTRACT

Access to clean water is the mandatory requirement for every living being to sustain life. So, membrane-based integrated approach of adsorption and separation technology has recently been preferred by scientists over other conventional techniques, for wastewater treatment. Current research focused on the synthesis of novel imidazolium (A1) based IL, which was further functionalized with hydroxyapatite (HAp; extracted from Labeo rohita scales), to create possible solutions towards environmental remediation. Cellulose acetate (CA) was used for the fabrication of three different ionic liquid membranes. All the synthesized products were characterized by FTIR, XRD and TGA. Two dyes of different nature, i.e., congo red (anionic) and crystal violet (cationic) were selected because of their highly toxic and carcinogenic effects, for batch adsorption experiments. Antibacterial activity of the synthesized membranes was also evaluated against S. aureus. Results of the study revealed that CA-HA1 1:2 acted as the best adsorbent towards the removal of crystal violet, exhibiting removal efficiency of 98% with the contact time of 24 h while in case of congo red adsorption, CA-HA1 (1:2) proved as prime adsorbent with the removal efficiency of 96% for the same preceding contact time. Considering the antibacterial character of the synthesized membranes, CA-A1 (1:1) emerged as very efficient antibacterial agent with the inhibition zone of 50 mm after 48 h. The overall behavior of monolayer and multilayer adsorption was witnessed for both dyes while kinetic studies favored the pseudo-second order reaction for all adsorbents.


Subject(s)
Environmental Pollutants , Ionic Liquids , Water Pollutants, Chemical , Congo Red , Ionic Liquids/toxicity , Kinetics , Durapatite , Gentian Violet/chemistry , Staphylococcus aureus , Coloring Agents/chemistry , Anti-Bacterial Agents/toxicity , Adsorption , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
17.
Materials (Basel) ; 16(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37445026

ABSTRACT

Acetylation of glycerol to yield monoacetin (MAT), diacetin (DAT), and triacetin (TAT) over NiO-supported CeO2 (xNiO/CeO2) catalysts is reported. The catalysts were synthesized utilizing a sol-gel technique, whereby different quantities of NiO (x = 9, 27, and 45 wt%) were supported onto the CeO2 substrate, and hexadecyltrimethylammonium bromide (CTABr) served as a porogen. The utilization of EDX elemental mapping analysis confirmed the existence of evenly distributed Ni2+ ion and octahedral NiO nanoparticles on the CeO2 surface through the DRS UV-Vis spectroscopy. The most active catalyst is 27NiO/CeO2 based on TAT selectivity in the glycerol acetylation with ethanoic acid, attaining 97.6% glycerol conversion with 70.5% selectivity to TAT at 170 °C with a 1:10 glycerol/ethanoic acid molar ratio for 30 min using a non-microwave instant heating reactor. The 27NiO/CeO2 is reusable without significant decline in catalytic performance after ten consecutive reaction cycles, indicating high structure stability with accessible active acidity.

18.
Biotechnol J ; 18(11): e2200477, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37458688

ABSTRACT

Halophytes are the native inhabitants of saline environment. Their biomass can be considered as a potential substrate for the production of microbial enzymes. This study was intended at feasible utilization of a halophytic biomass, Cressia cretica, for pectinase production using a halo- and thermo-tolerant bacterium, Bacillus vallismortis MH 10. The data from fractionation of the C. cretica biomass revealed presence of 17% pectin in this wild biomass. Seven different factors (temperature, agitation, pH, inoculum size, peptone concentration, substrate concentration, and incubation time) affecting pectinase production using C. cretica were assessed through a statistical tool, Plackett-Burman design. Consequently, two significant factors (incubation time and peptone concentration) were optimized using the central composite design. The strain produced 20 IU mL-1 of pectinase after 24 h under optimized conditions. The enzyme production kinetics data also confirmed that 24 h is the most suitable cultivation period for pectinase production. Fourier transform infrared spectroscopy and scanning electron microscopy of C. cretica biomass ascertained utilization of pectin and structural changes after fermentation. The purification of pectinase by using DEAE column yielded specific activity and purification fold of 88.26 IU mg-1 and 3.2, respectively. The purified pectinase had a molecular weight of >65 kDa. This study offers prospects of large-scale production of pectinase by halotolerant strain in the presence of economical and locally grown substrate that makes the enzyme valuable for various industrial operations.


Subject(s)
Peptones , Polygalacturonase , Polygalacturonase/chemistry , Polygalacturonase/metabolism , Biomass , Fermentation , Pectins/metabolism
19.
Chemosphere ; 338: 139485, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37442394

ABSTRACT

It is essential to investigate the physicochemical and thermal properties of choline chloride (ChCl)-based deep eutectic solvents (DESs) as hydrogen bond acceptor (HBA) with various hydrogen bond donor (HBD) functional groups, such as α-hydroxy acid (lactic acid) or polyol (glycerol). It is important to consider how molar ratios impact these properties, as they may be altered for particular applications. This study aimed to examine the physicochemical and thermal properties of ChCl-based DESs with lactic acid (LA) or glycerol (Gly) at different molar ratios (1:2-1:10). The pH of ChCl:LA (0-1.0) is lower than that of ChCl:Gly (4.0-5.0) because of the hydrogen bonds between ChCl and LA. A higher amount of LA/Gly resulted in higher densities of ChCl:Gly (1.20-1.22 g cm-3) and ChCl:LA (1.16-1.19 g cm-3) due to the stronger hydrogen bonds and tighter packing of the molecules. The refractive index of ChCl:Gly (1.47-1.48) was higher than ChCl:LA (1.44-1.46), with a trend similar to density. The viscosities of ChCl:Gly (0.235-0.453 Pa s) and ChCl:LA (0.04-0.06 Pa s) increased with increasing LA/Gly molar ratio but decreased with temperature due to the high kinetic energy from heating, lowering the attractive forces between molecules. The activation energy for ChCl:LA (15.29-15.55 kJ mol-1) is greater than for ChCl:Gly (7.77-8.78 kJ mol-1), indicating that ChCl:LA has a greater viscosity-temperature dependence than ChCl:Gly. The DESs decomposition temperatures are 179.73-192.14 °C for ChCl:LA and 189.69-197.41 °C for ChCl:Gly. Freezing temperatures are correlated with the molecular weight of HBDs, with lower values causing a larger decrease in freezing temperatures. The interactions of polyols with anions were stronger than those of α-hydroxy acids with anions. The variations in HBA to HBD molar ratios affected DESs properties, providing a fundamental understanding of the properties critical for their diverse applications.


Subject(s)
Deep Eutectic Solvents , Glycerol , Glycerol/chemistry , Solvents/chemistry , Choline/chemistry , Lactic Acid
20.
Int J Biol Macromol ; 249: 126018, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37517757

ABSTRACT

In this study, a mild and eco-friendly synergistic treatment strategy was investigated to improve the interfacial compatibility of bamboo fibers with poly(lactic acid). The characterization results in terms of the chemical structure, surface morphology, thermal properties, and water resistance properties demonstrated a homogeneous dispersion and excellent interfacial compatibility of the treated composites. The excellent interfacial compatibility is due to multi-layered coating of bamboo fibers using synergistic treatment involving dilute alkali pretreatment, polydopamine coating and silane coupling agent modification. The composites obtained using the proposed synergistic treatment strategy exhibited excellent mechanical properties. Optimal mechanical properties were observed for composites with synergistically treated bamboo fiber mass proportion of 20 %. The tensile strength, elongation at break and tensile modulus of the treated composites were increased by 63.06 %, 183.04 % and 259.04 %, respectively, compared to the untreated composites. This synergistic treatment strategy and the remarkable performance of the treated composites have a wide range of applicability in bio-composites (such as industrial packaging, automotive lightweight interiors, and consumer goods).


Subject(s)
Polyesters , Polyesters/chemistry , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...