Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(7): e202400062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743868

ABSTRACT

Acrylamide (ACR), an industrial compound, causes both male and female reproductive toxicity. Lepidium sativum seeds (L. sativum) (Garden cress) are known for their health benefits as antioxidant, antiasthmatic, anticoagulant, anti-inflammatory, and analgesic agents. Therefore, this study aimed to investigate the phytochemistry and nutritional value of L. sativum seeds oil for attenuating the ovarian damage induced by acrylamide in rats. The phytochemical investigation of the seeds revealed the presence of vitamins, potassium, iron, sugar and amino acids. Twenty eight compounds from the unsaponifiable fraction and twenty three compounds from the saponifiable fraction were identified. Three sterols and two triterpenes were isolated and identified as ß-sitosterol (1), ▵5-avenasterol (2), friedelanol (3), stigmasta-4, 22-dien-3-one (4), and ursolic acid (5). Treatment of acrylamide-induced rats with L. sativum seeds oil ameliorated prolactin (PRL), progesterone (P4), estradiol (E2), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF- α) with variable degrees. The histopathological findings of ovaries supported these results. In conclusion, compounds (3-5) were isolated for the first time from L. sativum seeds oil. The seeds oil attenuated the ovarian damage and could potentially be a new supplemental agent against female infertility.


Subject(s)
Acrylamide , Lepidium sativum , Ovary , Oxidative Stress , Plant Oils , Seeds , Animals , Female , Rats , Acrylamide/toxicity , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , DNA Damage/drug effects , Lepidium sativum/chemistry , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Oxidative Stress/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Oils/isolation & purification , Rats, Wistar , Seeds/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology
2.
PLoS One ; 18(3): e0282729, 2023.
Article in English | MEDLINE | ID: mdl-36888689

ABSTRACT

The leaves of Azadirachta indica L. and Melia azedarach L., belonging to Meliaceae family, have been shown to have medicinal benefits and are extensively employed in traditional folk medicine. Herein, HPLC analysis of the ethyl acetate fraction of the total methanolic extract emphasized the enrichment of both A. indica L., and M. azedarach L. leaves extracts with phenolic and flavonoids composites, respectively. Besides, 4 limonoids and 2 flavonoids were isolated using column chromatography. By assessing the in vitro antiviral activities of both total leaves extracts against Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2), it was found that A. indica L. and M. azedarach L. have robust anti-SARS-CoV-2 activities at low half-maximal inhibitory concentrations (IC50) of 8.451 and 6.922 µg/mL, respectively. Due to the high safety of A. indica L. and M. azedarach L. extracts with half-maximal cytotoxic concentrations (CC50) of 446.2 and 351.4 µg/ml, respectively, both displayed extraordinary selectivity indices (SI>50). A. indica L. and M. azedarach L. leaves extracts could induce antibacterial activities against both Gram-negative and positive bacterial strains. The minimal inhibitory concentrations of A. indica L. and M. azedarach L. leaves extracts varied from 25 to 100 mg/mL within 30 min contact time towards the tested bacteria. Our findings confirm the broad-spectrum medicinal value of A. indica L. and M. azedarach L. leaves extracts. Finally, additional in vivo investigations are highly recommended to confirm the anti-COVID-19 and antimicrobial activities of both plant extracts.


Subject(s)
Azadirachta , COVID-19 , Melia azedarach , SARS-CoV-2 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Bacteria , Plant Extracts/pharmacology , Plant Extracts/analysis , Plant Leaves/chemistry , Flavonoids/pharmacology , Flavonoids/analysis
3.
Biomarkers ; 27(5): 427-440, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35253573

ABSTRACT

CONTEXT: Diabetes mellitus (DM) is a metabolic disorder and may lead to cognitive dysfunctions. OBJECTIVE: The aim of this work is to evaluate the potency of Salvia hispanica L. seeds (S. hispanica L.) (chia seeds) petroleum ether extract in attenuating brain complications associated with streptozotocin (STZ) induced diabetes in rats. MATERIALS AND METHODS: Phytochemical composition of the seeds extract, macro and micro elements, vitamins, protein, carbohydrate and caloric values were estimated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight (b.wt)). Glibenclamide as a reference drug was also evaluated. The biochemical evaluation was done by measuring levels of glucose, insulin, α- amylase, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), dopamine (DA), serotonin (5-HD), noradrenaline (NE), acetylcholinesterase (AchE), tumour necrosis factor-α (TNF-α), DNA fragmentation pattern and the histopathological profile of the brain hippocampus region. RESULTS: Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of twenty-five fatty acid esters and twenty-two compounds. Column chromatography led to the isolation of nine compounds. Treatment with the seeds extract revealed improvement of the measured parameters with variable degrees. CONCLUSION: Chia seeds extract succeeded to attenuate the neurodegeneration in diabetic rats. Thereafter, it had a therapeutic effect and could be potentially used as a new dietary supplement against diabetic encephalopathy.


Subject(s)
Brain Diseases , Diabetes Mellitus, Experimental , Plant Extracts , Salvia hispanica , Acetylcholinesterase , Animals , Brain Diseases/drug therapy , DNA , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Neurotransmitter Agents , Oxidative Stress , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Salvia hispanica/chemistry , Seeds/chemistry , Streptozocin
4.
Planta Med ; 86(1): 61-69, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31627218

ABSTRACT

Opuntia ficus-indica extract has been used in traditional folk medicine for several purposes and exhibits anti-inflammatory properties. This study was directed to explore the prophylactic effect of O. ficus-indica fruit peel extract against irradiation-induced colitis in rats. GC/MS analysis of the petroleum ether extract led to recognition of 33 compounds in the unsaponifiable fraction and 15 fatty acid methyl esters in the saponifiable part. Thirteen terpenes and sterols were isolated and identified from which ten compounds were not isolated from any part of this species before. Data showed that irradiation induced colon injury as manifested by elevated contents of malondialdehyde, nitric oxide, myeloperoxidase, intercellular adhesion molecule-1, cyclooxygenase-2, tumor necrosis factor alpha, and nuclear factor kappa B, while it reduced superoxide dismutase activity and interleukin 10 content in colonic tissues, which was confirmed by histopathological examination. Pretreatment with O. ficus-indica extract attenuated the alteration in the measured parameters. It could be concluded that O. ficus-indica fruit peel extract can be regarded as a potential agent in limiting colonic complications due to irradiation, possibly by its antioxidant and anti-inflammatory properties.


Subject(s)
Colitis/prevention & control , Colon/radiation effects , Opuntia/chemistry , Plant Extracts/therapeutic use , Radiation-Protective Agents/isolation & purification , Animals , Colitis/etiology , Colitis/pathology , Colon/drug effects , Colon/pathology , Female , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Phytotherapy , Plant Extracts/isolation & purification , Pre-Exposure Prophylaxis , Radiation-Protective Agents/therapeutic use , Rats , Rats, Wistar
5.
Mol Biol Rep ; 45(6): 2007-2023, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30244397

ABSTRACT

Paracetamol is the most commonly used analgesic-antipyretic drugs. Its excess use causes an acute hepatotoxicity. It is well known that the Bacillariophyta alga Amphora coffeaeformis is rich in many photosynthetic pigments with antioxidant activities as well as a series of biologically active substances. The current work has been designed to study the phytochemical composition of different A. coffeaeformis algal extracts to select the most effective one. It was verified that acetone A. coffeaeformis algal extract is rich in various pigments and polyphenolic compounds (ß-carotene (9.31 ± 0.06 mg·g-1), gallic acid (28.31 µg·g-1), catechin (38.08 µg·g-1) and p-coumaric acid (38.69 µg·g-1)). The pigments and phenolic profiles in acetone extract were determined in addition to isolation of ß-carotene and fucoxanthin which exhibited free radical scavenging activity by 74.80% and 69.40%, respectively. Therefore, the highest total antioxidant capacity and free radical scavenging activity were noticed with this extract. Consequently, efficiency of this algal extract was evaluated against hepatic intoxication induced by paracetamol in rats. The biochemical measurements (liver functions and markers of oxidative stress) were  assayed. Moreover, the native protein, lipid and calcium moieties of native protein patterns in addition to catalase (CAT); peroxidases (POX); α- and ß-esterase (EST) isoenzymes and genomic DNA patterns were electrophoretically detected in liver tissues. It was found that paracetamol caused significant (P < 0.05) elevation in serum liver functions associated with decline in activities of the antioxidant enzymes in that tissues. Also, it caused alterations represented electrophoretically at qualitative level from variations in the bands number and arrangement. So that, the paracetamol treated group was noticed with the lowest similarity index (SI). In addition, it caused abnormalities at the quantitative level through variations in quantity of normal bands. Algal extract restored all the biochemical functions to normal levels in the algal extract simult-treated and pre-treated groups. Furthermore, it exhibited ameliorative effect against the electrophoretic alterations through restoring the absent normal bands and hiding the abnormal ones and hence increasing the SI values especially in the extract simult-treated group. Algal extract exhibited antagonistic effect against the hepatic injury and the deleterious effects induced by paracetamol in the extract simult-treated group.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Diatoms/metabolism , Plant Extracts/pharmacology , Acetaminophen/adverse effects , Acetaminophen/pharmacology , Animals , Antioxidants/metabolism , Free Radical Scavengers/metabolism , Liver/metabolism , Male , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Polyphenols/chemistry , Rats , Rats, Sprague-Dawley
6.
Mycology ; 9(1): 70-80, 2018.
Article in English | MEDLINE | ID: mdl-30123663

ABSTRACT

The aim of the present study was to evaluate different biological activities of Trichoderma viride fungus (Family Hypocreaceae). Trichoderma viride isolated for the first time from the cucumber soil (rhizosphere). It was tested as antimicrobial, antioxidant and anticancer agent. Trichoderma viride from the cucumber soil (rhizosphere) caused inhibition of the mycelial growth of Fusarium solani, Rhizoctonia solani and Sclerotium rolfsii. Also, the alcoholic extract of the fungal mycelia proved a potent antibacterial activity against Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens. In addition, it exhibited a significant antifungal activity against Candida albicans, Fusarium solani, Fusarium oxysporium, Rhizoctonia solani and Pythium ultimum at 100 µg/disc. Study of the antimicrobial and antioxidant activities of the volatile constituents had been done. The in vitro antioxidant, anticancer and antiviral activities of the isolated proteins, and carbohydrates were determined. Furthermore, the volatile constituents were isolated from fresh mycelia of Trichoderma viride and subjected to GC/MS analysis. Total protein (10%), carbohydrate (19.57%), steroidal (13.95%) and triterpenoidal content (38.34%) were determined in the alcoholic extract of Trichoderma viride mycelia. In conclusion, this fungus showed antioxidant, anticancer, antiviral and antibacterial effects. Further studies must be done to identify the molecules responsible for its effect and to consider its application in the pharmacological and medicinal purposes.

7.
Biomed Pharmacother ; 97: 174-180, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29091863

ABSTRACT

The aim of the present study was to evaluate the hepatoprotective activity of ethyl acetate extract of the liquid culture filtrate of Chaetomium globosum fungus (family Chaetomiaceae). Rats were intraperitoneally injected by CCl4 (0.5ml/kg) twice a week for six consecutive weeks. Treatment tacks (250mg/kg) place at the same time of CCl4 induction and with the same duration. The evaluation was done through determination of liver function indices; aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total serum protein content. In addition, the oxidative stress markers; hepatic glutathione content (GSH), hepatic malondialdehyde (MDA), hepatic superoxide dismutase (SOD), and hepatic total protein were estimated. Moreover, the liver architectures were also examined. Isolation and identification of the main secondary metabolites were identified. Seven volatile compounds were identified from the plain chloroform fraction where, 1-Cyclopentyl-2,2-dimethyl-1-propanol (54.63%) was presented as the major compound. Eleven compounds were also identified from the fraction eluted by chloroform: methanol (85:15). 1,5,5-Trimethyl-6-methylene-1-cyclohexene (25.79%) and Norbornan-2-one (26.84%) are presented as the major compounds of this fraction. In conclusion, the extract recorded hepatoprotective effect by ameliorating the biochemical parameters under investigation. The liver histopathological pictures confirmed our results.


Subject(s)
Acetates/therapeutic use , Chaetomium/isolation & purification , Chaetomium/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Oxidative Stress/physiology , Acetates/pharmacology , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Drug Evaluation, Preclinical/methods , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL