Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38256242

Aberrant expression of the oncogenic retrotransposon LINE-1 is a hallmark of various cancer types, including non-small cell lung cancers (NSCLCs). Here, we present proof-of-principle evidence that LINE-1 analytes in extracellular vesicles (EVs) serve as tools for molecular diagnostics of NSCLC, with LINE-1 status in tumor cells and tissues mirroring the LINE-1 mRNA and ORF1p cargos of EVs from lung cancer cell culture conditioned media or human plasma. The levels of LINE-1 analytes in plasma EVs from ostensibly healthy individuals were higher in females than males. While the profiles of LINE-1 mRNA and ORF1p in African Americans compared to Hispanics were not significantly different, African Americans showed slightly higher ORF1p content, and 2-3 times greater ranges of LINE-1 values compared to Hispanics. Whole plasma ORF1p levels correlated with EV ORF1p levels, indicating that most of the circulating LINE-1 protein is contained within EVs. EV LINE-1 mRNA levels were elevated in patients with advanced cancer stages and in select patients with squamous cell carcinoma and metastatic tumors compared to adenocarcinomas. The observed EV LINE-1 mRNA profiles paralleled the patterns of ORF1p expression in NSCLC tissue sections suggesting that LINE-1 analytes in plasma EVs may serve to monitor the activity of LINE-1 retroelements in lung cancer.


Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Female , Male , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Pathology, Molecular , Retroelements , Extracellular Vesicles/genetics , RNA, Messenger/genetics
3.
Front Immunol ; 14: 1188831, 2023.
Article En | MEDLINE | ID: mdl-37744342

Introduction: We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer. Method: We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot). Results: We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5'-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3' through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50<500nM.); 1 of which elicited a robust immune response. Conclusion: Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion.


Breast Neoplasms , Cancer Vaccines , Mammary Neoplasms, Animal , Humans , Animals , Female , Breast Neoplasms/genetics , Genes, MHC Class I , Breast
4.
J Med Imaging (Bellingham) ; 10(4): 044501, 2023 Jul.
Article En | MEDLINE | ID: mdl-37426053

Purpose: In women with biopsy-proven breast cancer, histologically normal areas of the parenchyma have shown molecular similarity to the tumor, supporting a potential cancer field effect. The purpose of this work was to investigate relationships of human-engineered radiomic and deep learning features between regions across the breast in mammographic parenchymal patterns and specimen radiographs. Approach: This study included mammograms from 74 patients with at least 1 identified malignant tumor, of whom 32 also possessed intraoperative radiographs of mastectomy specimens. Mammograms were acquired with a Hologic system and specimen radiographs were acquired with a Fujifilm imaging system. All images were retrospectively collected under an Institutional Review Board-approved protocol. Regions of interest (ROI) of 128×128 pixels were selected from three regions: within the identified tumor, near to the tumor, and far from the tumor. Radiographic texture analysis was used to extract 45 radiomic features and transfer learning was used to extract 20 deep learning features in each region. Kendall's Tau-b and Pearson correlation tests were performed to assess relationships between features in each region. Results: Statistically significant correlations in select subgroups of features with tumor, near to the tumor, and far from the tumor ROI regions were identified in both mammograms and specimen radiographs. Intensity-based features were found to show significant correlations with ROI regions across both modalities. Conclusions: Results support our hypothesis of a potential cancer field effect, accessible radiographically, across tumor and non-tumor regions, thus indicating the potential for computerized analysis of mammographic parenchymal patterns to predict breast cancer risk.

5.
Cancers (Basel) ; 15(7)2023 Mar 30.
Article En | MEDLINE | ID: mdl-37046736

For people at elevated risk for lung cancer, lung cancer screening (LCS) reduces lung cancer mortality. People with non-nicotine substance use disorders (SUDs) have elevated rates of smoking compared with the general population, highlighting them as a priority population for LCS consideration. Although research has shown LCS is underutilized, there is little literature to inform whether organizations that serve individuals with SUDs have existing clinical protocols surrounding LCS. In the current study, we examine the LCS eligibility and referral practices among these organizations. We conducted a statewide needs assessment survey in 2021 to discern how tobacco use was being addressed at Texas organizations that provide treatment or services to individuals with SUDs. Respondents were asked to report on their center's LCS eligibility and referral practices. The analytic sample consists of 125 respondents who represented 23 federally qualified health centers, 29 global local mental health authorities (LMHAs), 12 substance use treatment programs in LMHAs, and 61 standalone substance use treatment centers. Very few respondents indicated that healthcare providers at their center made referrals to LCS for patients (8.8%); a few respondents indicated that their healthcare providers assessed patients' eligibility for LCS but did not make referrals (3.2%). Intervention and implementation efforts are needed in these and other SUD healthcare settings to bolster organizational capacity and ensure that patients are being navigated to lung cancer screening at multiple touch points across the care continuum.

6.
Cancers (Basel) ; 15(7)2023 Apr 04.
Article En | MEDLINE | ID: mdl-37046802

The identification of women at risk for sporadic breast cancer remains a clinical challenge. We hypothesize that the temporal analysis of annual screening mammograms, using a long short-term memory (LSTM) network, could accurately identify women at risk of future breast cancer. Women with an imaging abnormality, which had been biopsy-confirmed to be cancer or benign, who also had antecedent imaging available were included in this case-control study. Sequences of antecedent mammograms were retrospectively collected under HIPAA-approved guidelines. Radiomic and deep-learning-based features were extracted on regions of interest placed posterior to the nipple in antecedent images. These features were input to LSTM recurrent networks to classify whether the future lesion would be malignant or benign. Classification performance was assessed using all available antecedent time-points and using a single antecedent time-point in the task of lesion classification. Classifiers incorporating multiple time-points with LSTM, based either on deep-learning-extracted features or on radiomic features, tended to perform statistically better than chance, whereas those using only a single time-point failed to show improved performance compared to chance, as judged by area under the receiver operating characteristic curves (AUC: 0.63 ± 0.05, 0.65 ± 0.05, 0.52 ± 0.06 and 0.54 ± 0.06, respectively). Lastly, similar classification performance was observed when using features extracted from the affected versus the contralateral breast in predicting future unilateral malignancy (AUC: 0.63 ± 0.05 vs. 0.59 ± 0.06 for deep-learning-extracted features; 0.65 ± 0.05 vs. 0.62 ± 0.06 for radiomic features). The results of this study suggest that the incorporation of temporal information into radiomic analyses may improve the overall classification performance through LSTM, as demonstrated by the improved discrimination of future lesions as malignant or benign. Further, our data suggest that a potential field effect, changes in the breast extending beyond the lesion itself, is present in both the affected and contralateral breasts in antecedent imaging, and, thus, the evaluation of either breast might inform on the future risk of breast cancer.

7.
Cancer Med ; 12(7): 8499-8509, 2023 04.
Article En | MEDLINE | ID: mdl-36621828

BACKGROUND: Unlike normal cells, cancer cells frequently have multiple centrosomes that can cluster to form bipolar mitotic spindles and allow for successful cell division. Inhibiting centrosome clustering, therefore, holds therapeutic promise to promote cancer cell-specific cell death. METHODS: We used confocal microscopy, real-time PCR, siRNA knockdown, and western blot to analyze centrosome clustering and declustering using normal lung bronchial epithelial and nonsmall-cell lung cancer (NSCLC) cell lines. Also, we used Ingenuity Pathway Analysis software to identify novel pathways associated with centrosome clustering. RESULTS: In this study, we found that exposure to cigarette smoke condensate induces centrosome amplification and clustering in human lung epithelial cells. We observed a similar increase in centrosome amplification and clustering in unexposed NSCLC cell lines which may suggest a common underlying mechanism for lung carcinogenesis. We identified a cyclin D2-mediated centrosome clustering pathway that involves a sonic hedgehog-forkhead box protein M1 axis which is critical for mitosis. We also observed that cyclin D2 knockdown induced multipolar mitotic spindles that could eventually lead to cell death. CONCLUSIONS: Here we report a novel role of cyclin D2 in the regulation of centrosome clustering, which could allow the identification of tumors sensitive to cyclin D2 inhibitors. Our data reveal a pathway that can be targeted to inhibit centrosome clustering by interfering with the expression of cyclin D2-associated genes.


Cigarette Smoking , Humans , Cyclin D2/metabolism , Cell Line, Tumor , Hedgehog Proteins/metabolism , Centrosome/metabolism , Centrosome/pathology , Spindle Apparatus/metabolism , Mitosis , Epithelial Cells , Lung
8.
Cancer Med ; 12(1): 584-596, 2023 01.
Article En | MEDLINE | ID: mdl-35676822

BACKGROUND: Non-small cell lung cancer (NSCLC) comprises the majority (~85%) of all lung tumors, with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being the most frequently diagnosed histological subtypes. Multi-modal omics profiling has been carried out in NSCLC, but no studies have yet reported a unique metabolite-related gene signature and altered metabolic pathways associated with LUAD and LUSC. METHODS: We integrated transcriptomics and metabolomics to analyze 30 human lung tumors and adjacent noncancerous tissues. Differential co-expression was used to identify modules of metabolites that were altered between normal and tumor. RESULTS: We identified unique metabolite-related gene signatures specific for LUAD and LUSC and key pathways aberrantly regulated at both transcriptional and metabolic levels. Differential co-expression analysis revealed that loss of coherence between metabolites in tumors is a major characteristic in both LUAD and LUSC. We identified one metabolic onco-module gained in LUAD, characterized by nine metabolites and 57 metabolic genes. Multi-omics integrative analysis revealed a 28 metabolic gene signature associated with poor survival in LUAD, with six metabolite-related genes as individual prognostic markers. CONCLUSIONS: We demonstrated the clinical utility of this integrated metabolic gene signature in LUAD by using it to guide repurposing of AZD-6482, a PI3Kß inhibitor which significantly inhibited three genes from the 28-gene signature. Overall, we have integrated metabolomics and transcriptomics analyses to show that LUAD and LUSC have distinct profiles, inferred gene signatures with prognostic value for patient survival, and identified therapeutic targets and repurposed drugs for potential use in NSCLC treatment.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Transcriptome , Adenocarcinoma of Lung/genetics , Gene Expression Profiling
9.
Cancer Res Commun ; 2(8): 884-893, 2022 08.
Article En | MEDLINE | ID: mdl-36923308

Tumors accumulated with infiltrated immune cells (hot tumors) have a higher response rate to immune checkpoint blockade, when compared with those with minimal T-cell infiltration (cold tumors). We report here that patients with lung cancer with different racial backgrounds harbored distinct immune cell profiles in the tumor microenvironment. Compared with African Americans (AA), Caucasian Americans (CA) exhibited increased immune cell infiltration and vasculature, and increased survival. Changes of survival and immune profile were most pronounced among active smokers and nonsmokers, compared with former smokers and total patients. Neighborhood analysis showed that immune cells accumulated around cancer cells in CAs but not AAs. Our findings reveal intrinsic biological differences between AA and CA patients with lung cancer, suggesting that treatment plans should be tailored for patients with different racial backgrounds. Significance: We report biological racial differences among patients with lung cancer where Caucasians present a hot tumor microenvironment compared with cold tumor in AAs. Treatment plans should be customized to maximize therapeutic outcomes.


Lung Neoplasms , Racial Groups , Humans , Black or African American , Lung Neoplasms/ethnology , Lung Neoplasms/immunology , Tumor Microenvironment/immunology , White
10.
Breast Cancer (Auckl) ; 15: 11782234211056134, 2021.
Article En | MEDLINE | ID: mdl-34924757

BACKGROUND: Inflammatory breast cancer (IBC) is a rare form of breast cancer with a poor prognosis. IBC is characterized by florid lymphovascular tumor emboli in the skin and the parenchyma of the breast. We hypothesized that the formation of these emboli/clusters plays a pivotal role in IBC metastasis and its rapid progression, and that their structure and function may be a key to identifying molecular biological differences between IBC and non IBC. METHODS: Mechanical methods were used to mimic the lymph fluid viscosity by adding 2.25% of PEG8000 to the media. Clusters were obtained for IBC tumor cell lines (SUM149 and IBC-3), non IBC tumor cell lines (MDA-MB-231, MDA-MB-468, and MCF7), and a non-tumorigenic human mammary epithelial cell line (MCF10A). Clusters were analyzed by light microscopy, and then prepared for and observed by transmission electron microscopy (TEM). RESULTS: Significant differences were seen between IBC and non IBC clusters. The TEM analysis revealed that IBC cells harbored numerous microvilli and microvesicles, both on the free outer surface and inside the cluster. Microvilli from IBC cell clusters were noted at higher density and were longer than those of non IBC cell clusters. CONCLUSIONS: IBC tumor cell clusters exhibited distinct ultrastructural features characterized by the presence of long, crowded microvilli and numerous microvesicles. These microvilli may play an important role in the biology and aggressiveness of IBC.

11.
Cancer Med ; 10(18): 6261-6272, 2021 09.
Article En | MEDLINE | ID: mdl-34327874

BACKGROUND: Inflammatory breast cancer (IBC) is a clinical diagnosis. Here, we examined the association of a "classic" triad of clinical signs, swollen involved breast, nipple change, and diffuse skin change, with overall survival (OS). METHOD: Breast medical photographs from patients enrolled on a prospective IBC registry were scored by two independent reviewers as classic (triad above), not classic, and difficult to assign. Chi-squared test, Fisher's exact test, and Wilcoxon rank-sum test were used to assess differences between patient groups. Kaplan-Meier estimates and the log-rank test and Cox proportional hazard regression were used to assess the OS. RESULTS: We analyzed 245 IBC patients with median age 54 (range 26-81), M0 versus M1 status (157 and 88 patients, respectively). The classic triad was significantly associated with smoking, post-menopausal status, and metastatic disease at presentation (p = 0.002, 0.013, and 0.035, respectively). Ten-year actuarial OS for not classic and difficult to assign were not significantly different and were grouped for further analyses. Ten-year OS was 29.7% among patients with the classic sign triad versus 57.2% for non-classic (p < 0.0001). The multivariate Cox regression model adjusting for clinical staging (p < 0.0001) and TNBC status (<0.0001) demonstrated classic presentation score significantly associated with poorer OS time (HR 2.6, 95% CI 1.7-3.9, p < 0.0001). CONCLUSIONS: A triad of classic IBC signs independently predicted OS in patients diagnosed with IBC. Further work is warranted to understand the biology related to clinical signs and further extend the understanding of physical examination findings in IBC.


Breast/immunology , Inflammatory Breast Neoplasms/mortality , Adult , Aged , Aged, 80 and over , Breast/pathology , Breast/surgery , Chemotherapy, Adjuvant/methods , Chemotherapy, Adjuvant/statistics & numerical data , Female , Humans , Inflammatory Breast Neoplasms/diagnosis , Inflammatory Breast Neoplasms/immunology , Inflammatory Breast Neoplasms/therapy , Kaplan-Meier Estimate , Mastectomy , Middle Aged , Neoadjuvant Therapy/methods , Neoadjuvant Therapy/statistics & numerical data , Prognosis , Prospective Studies
12.
Mutat Res Rev Mutat Res ; 787: 108344, 2021.
Article En | MEDLINE | ID: mdl-34083053

Respiratory tissues are highly susceptible to diseases due to the constant exposure to physical and chemical airborne pollutants. Chronic obstructive pulmonary disease (COPD) and lung cancer are among the most common causes of serious illness and death worldwide. The inflammatory environment associated with these respiratory diseases has long been accepted as the major player in the development of airway abnormalities. The presence and relevance of DNA damage and genomic instability makes the micronucleus assay a suitable candidate to quantitatively estimate these early pathogenetic events. A systematic review and meta-analysis were planned to determine underlying common mechanisms that can explain the relationships between COPD and lung cancer. A total of 17 studies from Jan 1999 to Dec 2019 comparing micronucleus frequency in patients affected by respiratory diseases vs healthy controls were analysed. Our results confirmed the presence of significant association between MN frequency and the diseases investigated, and suggested a circle of events linking inflammation induced oxidative stress to the risk of disease through genomic instability and hypoxia. Therefore, using non-invasive, robust and cost effective genomic instability assays such as the micronucleus assay, would allow us to capture unique phenotypic and biological changes that would allow the identification of subjects at high risk of developing lung diseases and improve early detection strategies.


Genomic Instability/genetics , Inflammation/genetics , Lung Neoplasms/genetics , Micronucleus Tests/methods , Pulmonary Disease, Chronic Obstructive/genetics , Animals , Humans , Oxidative Stress/genetics , Oxidative Stress/physiology
13.
NAR Cancer ; 2(3): zcaa013, 2020 Sep.
Article En | MEDLINE | ID: mdl-32776008

Homologous recombination/end joining (HR/HEJ)-deficient cancers with BRCA mutations utilize alternative DNA double-strand break repair pathways, particularly alternative non-homologous end joining or microhomology-mediated end joining (alt-EJ/MMEJ) during S and G2 cell cycle phases. Depletion of alt-EJ factors, including XRCC1, PARP1 and POLQ, is synthetically lethal with BRCA2 deficiency; yet, XRCC1 roles in HR-deficient cancers and replication stress are enigmatic. Here, we show that after replication stress, XRCC1 forms an active repair complex with POLQ and MRE11 that supports alt-EJ activity in vitro. BRCA2 limits XRCC1 recruitment and repair complex formation to suppress alt-EJ at stalled forks. Without BRCA2 fork protection, XRCC1 enables cells to complete DNA replication at the expense of increased genome instability by promoting MRE11-dependent fork resection and restart. High XRCC1 and MRE11 gene expression negatively impacts Kaplan-Meier survival curves and hazard ratios for HR-deficient breast cancer patients in The Cancer Genome Atlas. The additive effects of depleting both BRCA2 and XRCC1 indicate distinct pathways for replication restart. Our collective data show that XRCC1-mediated processing contributes to replication fork degradation, replication restart and chromosome aberrations in BRCA2-deficient cells, uncovering new roles of XRCC1 and microhomology-mediated repair mechanisms in HR-deficient cancers, with implications for chemotherapeutic strategies targeting POLQ and PARP activities.

14.
Cancer Prev Res (Phila) ; 13(11): 923-934, 2020 11.
Article En | MEDLINE | ID: mdl-32655004

Chronic obstructive pulmonary disease (COPD) is a long-term lung disease characterized by irreversible lung damage resulting in airflow limitation, abnormal permanent air-space enlargement, and emphysema. Cigarette smoking is the major cause of COPD with 15% to 30% of smokers developing either disease. About 50% to 80% of patients with lung cancer have preexisting COPD and smokers who have COPD are at an increased risk for developing lung cancer. Therefore, COPD is considered an independent risk for lung cancer, even after adjusting for smoking. A crucial early event in carcinogenesis is the induction of the genomic instability through alterations in the mitotic spindle apparatus. To date, the underlying mechanism by which COPD contributes to lung cancer risk is unclear. We hypothesized that tobacco smoke carcinogens induce mitotic spindle apparatus abnormalities and alter expression of crucial genes leading to increased genomic instability and ultimately tumorigenesis. To test our hypothesis, we assessed the genotoxic effects of a potent tobacco-smoke carcinogen [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, (NNK)] on bronchial epithelial cells from patients with COPD and normal bronchial epithelial cells and identified genes associated with mitotic spindle defects and chromosome missegregation that also overlap with lung cancer. Our results indicate that exposure to NNK leads to a significantly altered spindle orientation, centrosome amplification, and chromosome misalignment in COPD cells as compared with normal epithelial cells. In addition, we identified several genes (such as AURKA, AURKB, and MAD2L2) that were upregulated and overlap with lung cancer suggesting a potential common pathway in the transition from COPD to lung cancer.


Epithelial Cells/pathology , Lung Neoplasms/pathology , Lung/pathology , Mitosis , Nitrosamines/adverse effects , Pulmonary Disease, Chronic Obstructive/pathology , Spindle Apparatus/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinogens/toxicity , DNA Damage , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Forkhead Box Protein M1/metabolism , Humans , Lung/drug effects , Lung/metabolism , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Mad2 Proteins/metabolism , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/metabolism , Spindle Apparatus/drug effects
15.
Cancer Cytopathol ; 128(8): 553-562, 2020 08.
Article En | MEDLINE | ID: mdl-32320527

BACKGROUND: Approximately one third of needle biopsies that are performed to rule out malignancy of indeterminate pulmonary nodules detected radiologically during lung cancer screening are negative, thus exposing cancer-free patients to risks of pneumothorax, bleeding, and infection. A noninvasive confirmatory tool (eg, liquid biopsy) is urgently needed in the lung cancer diagnosis setting to stratify patients who should receive biopsy versus those who should be monitored. METHODS: A novel antigen-independent, 4-color fluorescence in situ hybridization (FISH)-based method was developed to detect circulating tumor cells (CTCs) with abnormalities in gene copy numbers in mononuclear cell-enriched peripheral blood samples from patients with (n = 107) and without (n = 100) lung cancer. RESULTS: Identification of CTCs using FISH probes at 10q22.3/CEP10 and 3p22.1/3q29 detected lung cancer cases with 94.2% accuracy, 89% sensitivity, and 100% specificity compared with biopsy. CONCLUSION: The high accuracy of this liquid biopsy method suggests that it may be used as a noninvasive decision tool to reduce the frequency of unnecessary needle biopsy in patients with benign pulmonary lesions.


Lung Diseases/diagnosis , Lung Neoplasms/diagnosis , Neoplastic Cells, Circulating , Tomography, X-Ray Computed/methods , A549 Cells , Aged , Aneuploidy , Diagnosis, Differential , Female , Humans , In Situ Hybridization, Fluorescence/methods , Liquid Biopsy , Lung Diseases/diagnostic imaging , Lung Diseases/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Male , Middle Aged , Neoplasm Staging , Sensitivity and Specificity
16.
Article En | MEDLINE | ID: mdl-32247551

The "Micronuclei and Disease" workshop was organized by the HUMN Project consortium and hosted by the European Environmental Mutagen and Genomics Society at their annual meeting in Rennes, France, on 23 May 2019. The program of the workshop focused on addressing the emerging evidence linking micronucleus (MN) frequency to human disease. The first objective was to review what has been published and evaluate the level and quality of evidence for the connection between MN frequency and various diseases through all life stages. The second objective was to identify the knowledge gaps and what else needs to be done to determine the clinical utility of MN assays as predictors of disease risk and of prognosis when disease is active. Speakers at the workshop discussed the association of MN frequency with inflammation, infertility, pregnancy complications, obesity, diabetes, cardiovascular disease, kidney disease, cervical and bladder cancer, oral head and neck cancer, lung cancer, accelerated ageing syndromes, neurodegenerative diseases, and a road-map on how to utilise this knowledge was proposed. The outcomes of the workshop indicated that there are significant opportunities for translating the application of MN assays into clinical practice to improve disease prevention and risk management and to inform public health policy.


DNA Damage/drug effects , Metagenomics , Micronuclei, Chromosome-Defective/drug effects , Mutagens/toxicity , Humans , Micronucleus Tests
17.
Oncotarget ; 11(48): 4479-4489, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-33400733

Centrosomes amplification is a hallmark of cancer. We hypothesize that 2-methoxyestradiol (2-ME) sensitizes breast cancer (BC) cells to taxanes by targeting amplified centrosomes. We assessed the extent by which 2-ME together with paclitaxel (PTX) induces centrosome alterations with subsequent mitotic catastrophe in different BC subtypes. 2-ME induced a significant reduction in PTX IC50 values in all cells tested ranging from 28-44% (P < 0.05). Treatment with both PTX and 2-ME significantly increased the number of misaligned metaphases compared to PTX alone (34%, 100% and 52% for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). The number of cells with multipolar spindle formation was significantly increased (81%, 220% and 285% for MCF7, MDA-MB231 and SUM 149, respectively; P < 0.05). PTX and 2-ME treatment significantly increased interphase declustering in cancer cells (56% for MCF7, 208% for MDA-MB231 and 218% for SUM149, respectively; P < 0.05) and metaphase declustering (1.4-fold, 1.56-fold and 2.48-fold increase for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). This report is the first to document centrosome declustering as a mechanism of action of 2-ME and provides a potential approach for reducing taxane toxicity in cancer treated patients.

18.
Am J Respir Crit Care Med ; 200(6): 742-750, 2019 09 15.
Article En | MEDLINE | ID: mdl-30896962

Rationale: Uninvolved normal-appearing airway epithelium has been shown to exhibit specific mutations characteristic of nearby non-small cell lung cancers (NSCLCs). Yet, its somatic mutational landscape in patients with early-stage NSCLC is unknown.Objectives: To comprehensively survey the somatic mutational architecture of the normal airway epithelium in patients with early-stage NSCLC.Methods: Multiregion normal airways, comprising tumor-adjacent small airways, tumor-distant large airways, nasal epithelium and uninvolved normal lung (collectively airway field), matched NSCLCs, and blood cells (n = 498) from 48 patients were interrogated for somatic single-nucleotide variants by deep-targeted DNA sequencing and for chromosomal allelic imbalance events by genome-wide genotype array profiling. Spatiotemporal relationships between the airway field and NSCLCs were assessed by phylogenetic analysis.Measurements and Main Results: Genomic airway field carcinogenesis was observed in 25 cases (52%). The airway field epithelium exhibited a total of 269 somatic mutations in most patients (n = 36) including key drivers that were shared with the NSCLCs. Allele frequencies of these acquired variants were overall higher in NSCLCs. Integrative analysis of single-nucleotide variants and allelic imbalance events revealed driver genes with shared "two-hit" alterations in the airway field (e.g., TP53, KRAS, KEAP1, STK11, and CDKN2A) and those with single hits progressing to two in the NSCLCs (e.g., PIK3CA and NOTCH1).Conclusions: Tumor-adjacent and tumor-distant normal-appearing airway epithelia exhibit somatic driver alterations that undergo selection-driven clonal expansion in NSCLC. These events offer spatiotemporal insights into the development of NSCLC and, thus, potential targets for early treatment.


Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Transformation, Neoplastic/genetics , Epithelium/growth & development , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Mutation , Adenocarcinoma/physiopathology , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/physiopathology , Female , Humans , Lung Neoplasms/physiopathology , Male , Middle Aged , Sequence Analysis, DNA
19.
PLoS One ; 13(9): e0204372, 2018.
Article En | MEDLINE | ID: mdl-30248155

BACKGROUND: To date, studies on inflammatory breast cancer (IBC) lack comprehensive epidemiological data. We analyzed detailed prospectively collected clinical and epidemiological data from the IBC Registry at The University of Texas MD Anderson Cancer Center. METHODS: Patients with IBC (n = 248) were consecutively diagnosed and prospectively enrolled between November 2006 and April 2013. All patients were newly diagnosed and at least 18 years old. Secondary IBC was excluded. Overall 160 variables were collected and evaluated including sociodemographics, anthropometrics, tobacco and alcohol consumption, reproductive variables, and family history data. RESULTS: Mean age at diagnosis was 51.6 (±11.5 SD) years, and the majority of patients were White (77.8%). A mean BMI ≥ 25 kg/m2, irrespective of menopausal status, was observed in 80.2% of all patients, with 82.6% of African Americans being obese. Approximately 42.2% of patients were ever smokers, and 91% reported ever being pregnant. A history of breastfeeding was reported in 54% of patients, with significant differences between ethnic groups in favor of White women (P<0.0001). Other reproductive factors such as use of birth control pills & hormone replacement therapy were also more frequently associated with White women compare to other ethnic groups (P < 0.05). In the multivariate Cox proportional hazard analysis, African American or Hispanic ethnicity, not having breastfed, higher clinical stage, and TNBC subtype were associated with shorter survival. CONCLUSION: Our data suggest that IBC is associated with distinct epidemiological profiles. This information could assist in targeting patients with specific preventive strategies based on their modifiable behavioral patterns.


Inflammatory Breast Neoplasms/epidemiology , Adult , Aged , Aged, 80 and over , Female , Humans , Inflammatory Breast Neoplasms/pathology , Middle Aged , Prospective Studies , Registries , Risk Factors , Survival Analysis , Young Adult
20.
Transl Lung Cancer Res ; 7(3): 336-346, 2018 Jun.
Article En | MEDLINE | ID: mdl-30050771

BACKGROUND: Despite the promising results of the National Lung Screening Trial in reducing lung cancer mortality among high risk smokers, several challenges remain to be addressed. These include the high false positive rates and the large number of smokers screened in order to prevent one lung cancer death. In addition, host genetic susceptibility has not been integrated into selection of who should be screened. These challenges highlight the need to develop robust ways to identify susceptible smokers for appropriate screening. METHODS: We used the cytokinesis block micronucleus (CBMN) assay to assess smoking induced genetic instability among NLST participants. Blood cultures were prepared at time of entry into the screening study and DNA damage was recorded as the frequency of binucleated nucleoplasmic bridges and micronuclei. Low dose CT (LDCT) and chest X-ray (CXR) image findings were available upon unblinding of the NLST study and imaging data were merged with blood marker data for statistical analysis. RESULTS: A total of 641 participants were included in this study. The frequency of the CBMN endpoints at time of entry into the study was significantly higher among study participants who had a positive finding during the 3-year screening or reported lung cancer at the end of the follow-up period as compared to participants who were negative. Growth curve models were used to compare trajectories of change in CBMN endpoints between entry into the study and end-of-screening period. A statistically significant increase was predicted for CBMN endpoints among the study participants who were positive versus those who remained negative at the end-of-screening period (P<0.001). CONCLUSIONS: Genetic instability biomarkers have the potential of facilitating the identification of genetically susceptible high-risk smokers who would benefit from targeted lung screening programs.

...