Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 13(12): 2566-2583, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37728660

ABSTRACT

The tumor microenvironment (TME) restricts antitumor CD8+ T-cell function and immunotherapy responses. Cancer cells compromise the metabolic fitness of CD8+ T cells within the TME, but the mechanisms are largely unknown. Here we demonstrate that one-carbon (1C) metabolism is enhanced in T cells in an antigen-specific manner. Therapeutic supplementation of 1C metabolism using formate enhances CD8+ T-cell fitness and antitumor efficacy of PD-1 blockade in B16-OVA tumors. Formate supplementation drives transcriptional alterations in CD8+ T-cell metabolism and increases gene signatures for cellular proliferation and activation. Combined formate and anti-PD-1 therapy increases tumor-infiltrating CD8+ T cells, which are essential for enhanced tumor control. Our data demonstrate that formate provides metabolic support to CD8+ T cells reinvigorated by anti-PD-1 to overcome a metabolic vulnerability in 1C metabolism in the TME to further improve T-cell function. SIGNIFICANCE: This study identifies that deficiencies in 1C metabolism limit the efficacy of PD-1 blockade in B16-OVA tumors. Supplementing 1C metabolism with formate during anti-PD-1 therapy enhances CD8+ T-cell fitness in the TME and CD8+ T-cell-mediated tumor clearance. These findings demonstrate that formate supplementation can enhance exhausted CD8+ T-cell function. See related commentary by Lin et al., p. 2507. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/genetics , Formates , Dietary Supplements , Tumor Microenvironment
2.
Trends Biochem Sci ; 48(7): 597-609, 2023 07.
Article in English | MEDLINE | ID: mdl-37080875

ABSTRACT

The metabolic cross-talk between cancer cells and T cells dictates cancer formation and progression. These cells possess metabolic plasticity. Thus, they adapt their metabolic profile to meet their phenotypic requirements. However, the nutrient microenvironment of a tumor is a very hostile niche in which these cells are forced to compete for the available nutrients. The hyperactive metabolism of tumor cells often outcompetes the antitumorigenic CD8+ T cells while promoting the protumorigenic exhausted CD8+ T cells and T regulatory (Treg) cells. Thus, cancer cells elude the immune response and spread in an uncontrolled manner. Identifying the metabolic pathways necessary to shift the balance from a protumorigenic to an antitumorigenic immune phenotype is essential to potentiate antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Tumor Microenvironment/genetics , Neoplasms/metabolism
3.
Atmos Pollut Res ; 13(12): 101620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36474671

ABSTRACT

Policies to improve air quality need to be based on effective plans for reducing anthropogenic emissions. In 2020, the outbreak of COVID-19 pandemic resulted in significant reductions of anthropogenic pollutant emissions, offering an unexpected opportunity to observe their consequences on ambient concentrations. Taking the national lockdown occurred in Italy between March and May 2020 as a case study, this work tries to infer if and what lessons may be learnt concerning the impact of emission reduction policies on air quality. Variations of NO2, O3, PM10 and PM2.5 concentrations were calculated from numerical model simulations obtained with business as usual and lockdown specific emissions. Both simulations were performed at national level with a horizontal resolution of 4 km, and at local level on the capital city Rome at 1 km resolution. Simulated concentrations showed a good agreement with in-situ observations, confirming the modelling systems capability to reproduce the effects of emission reductions on ambient concentration variations, which differ according to the individual air pollutant. We found a general reduction of pollutant concentrations except for ozone, that experienced an increase in Rome and in the other urban areas, and a decrease elsewhere. The obtained results suggest that acting on precursor emissions, even with sharp reductions like those experienced during the lockdown, may lead to significant, albeit complex, reduction patterns for secondary pollutant concentrations. Therefore, to be more effective, reduction measures should be carefully selected, involving more sectors than those related to mobility, such as residential and agriculture, and integrated on different scales.

4.
Science ; 377(6614): 1519-1529, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36173860

ABSTRACT

Gain-of-function mutations in isocitrate dehydrogenase (IDH) in human cancers result in the production of d-2-hydroxyglutarate (d-2HG), an oncometabolite that promotes tumorigenesis through epigenetic alterations. The cancer cell-intrinsic effects of d-2HG are well understood, but its tumor cell-nonautonomous roles remain poorly explored. We compared the oncometabolite d-2HG with its enantiomer, l-2HG, and found that tumor-derived d-2HG was taken up by CD8+ T cells and altered their metabolism and antitumor functions in an acute and reversible fashion. We identified the glycolytic enzyme lactate dehydrogenase (LDH) as a molecular target of d-2HG. d-2HG and inhibition of LDH drive a metabolic program and immune CD8+ T cell signature marked by decreased cytotoxicity and impaired interferon-γ signaling that was recapitulated in clinical samples from human patients with IDH1 mutant gliomas.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinogenesis , Glutarates , Isocitrate Dehydrogenase , Neoplasms , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Gain of Function Mutation , Glutarates/metabolism , Humans , Interferon-gamma/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism
5.
Cell Metab ; 34(8): 1137-1150.e6, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35820416

ABSTRACT

The tumor microenvironment (TME) is a unique metabolic niche that can inhibit T cell metabolism and cytotoxicity. To dissect the metabolic interplay between tumors and T cells, we establish an in vitro system that recapitulates the metabolic niche of the TME and allows us to define cell-specific metabolism. We identify tumor-derived lactate as an inhibitor of CD8+ T cell cytotoxicity, revealing an unexpected metabolic shunt in the TCA cycle. Metabolically fit cytotoxic T cells shunt succinate out of the TCA cycle to promote autocrine signaling via the succinate receptor (SUCNR1). Cytotoxic T cells are reliant on pyruvate carboxylase (PC) to replenish TCA cycle intermediates. By contrast, lactate reduces PC-mediated anaplerosis. The inhibition of pyruvate dehydrogenase (PDH) is sufficient to restore PC activity, succinate secretion, and the activation of SUCNR1. These studies identify PDH as a potential drug target to allow CD8+ T cells to retain cytotoxicity and overcome a lactate-enriched TME.


Subject(s)
Neoplasms , Pyruvic Acid , CD8-Positive T-Lymphocytes/metabolism , Humans , Immunity , Lactic Acid , Pyruvate Carboxylase/metabolism , Pyruvic Acid/metabolism , Pyruvic Acid/pharmacology , Succinic Acid , Tumor Microenvironment
6.
Nat Metab ; 4(4): 435-443, 2022 04.
Article in English | MEDLINE | ID: mdl-35361954

ABSTRACT

The alteration of metabolic pathways is a critical strategy for cancer cells to attain the traits necessary for metastasis in disease progression. Here, we find that dysregulation of propionate metabolism produces a pro-aggressive signature in breast and lung cancer cells, increasing their metastatic potential. This occurs through the downregulation of methylmalonyl coenzyme A epimerase (MCEE), mediated by an extracellular signal-regulated kinase 2-driven transcription factor Sp1/early growth response protein 1 transcriptional switch driven by metastatic signalling at its promoter level. The loss of MCEE results in reduced propionate-driven anaplerotic flux and intracellular and intratumoral accumulation of methylmalonic acid, a by-product of propionate metabolism that promotes cancer cell invasiveness. Altogether, we present a previously uncharacterized dysregulation of propionate metabolism as an important contributor to cancer and a valuable potential target in the therapeutic treatment of metastatic carcinomas.


Subject(s)
Neoplasms , Propionates , Humans , Methylmalonic Acid/metabolism , Phenotype , Propionates/pharmacology , Signal Transduction
7.
Science ; 372(6543): 716-721, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33986176

ABSTRACT

Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.


Subject(s)
Erythropoiesis , Mitochondria/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Zebrafish Proteins/metabolism , Animals , Citric Acid Cycle , DNA Methylation , Dihydroorotate Dehydrogenase , Electron Transport , Embryo, Nonmammalian/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Histones/metabolism , Leflunomide/pharmacology , Metabolic Networks and Pathways , Methylation , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxygen Consumption , Transcription Factors/genetics , Ubiquinone/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
8.
Nat Metab ; 3(1): 21-32, 2021 01.
Article in English | MEDLINE | ID: mdl-33398194

ABSTRACT

Metabolic transformation is a hallmark of cancer and a critical target for cancer therapy. Cancer metabolism and behaviour are regulated by cell-intrinsic factors as well as metabolite availability in the tumour microenvironment (TME). This metabolic niche within the TME is shaped by four tiers of regulation: (1) intrinsic tumour cell metabolism, (2) interactions between cancer cells and non-cancerous cells, (3) tumour location and heterogeneity and (4) whole-body metabolic homeostasis. Here, we define these modes of metabolic regulation and review how distinct cell types contribute to the metabolite composition of the TME. Finally, we connect these insights to understand how each of these tiers offers unique therapeutic potential to modulate the metabolic profile and function of all cells inhabiting the TME.


Subject(s)
Neoplasms/metabolism , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasms/drug therapy
9.
Nature ; 585(7824): 283-287, 2020 09.
Article in English | MEDLINE | ID: mdl-32814897

ABSTRACT

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Subject(s)
Aging/metabolism , Disease Progression , Methylmalonic Acid/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Adult , Aged , Aging/blood , Aging/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Methylmalonic Acid/blood , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/blood , Neoplasms/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Transcriptome/genetics , Transforming Growth Factor beta/metabolism
10.
Nat Commun ; 11(1): 1393, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170132

ABSTRACT

Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.


Subject(s)
Amino Acids/metabolism , Carcinoma, Hepatocellular/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/metabolism , Liver Neoplasms/metabolism , Cell Differentiation/physiology , Cell Line, Tumor , Cytochrome P-450 CYP3A , Female , Gene Knockout Techniques , Hep G2 Cells , Hepatocyte Nuclear Factor 1-alpha , Hepatocyte Nuclear Factor 3-gamma , High-Throughput Screening Assays , Homeodomain Proteins , Humans , Liver , Male , Metabolic Engineering , Metabolic Networks and Pathways , Middle Aged , Pluripotent Stem Cells , Stem Cells , Transcriptome , Tumor Suppressor Proteins
11.
Nature ; 568(7750): 117-121, 2019 04.
Article in English | MEDLINE | ID: mdl-30814728

ABSTRACT

The extracellular matrix is a major component of the local environment-that is, the niche-that determines cell behaviour1. During metastatic growth, cancer cells shape the extracellular matrix of the metastatic niche by hydroxylating collagen to promote their own metastatic growth2,3. However, only particular nutrients might support the ability of cancer cells to hydroxylate collagen, because nutrients dictate which enzymatic reactions are active in cancer cells4,5. Here we show that breast cancer cells rely on the nutrient pyruvate to drive collagen-based remodelling of the extracellular matrix in the lung metastatic niche. Specifically, we discovered that pyruvate uptake induces the production of α-ketoglutarate. This metabolite in turn activates collagen hydroxylation by increasing the activity of the enzyme collagen prolyl-4-hydroxylase (P4HA). Inhibition of pyruvate metabolism was sufficient to impair collagen hydroxylation and consequently the growth of breast-cancer-derived lung metastases in different mouse models. In summary, we provide a mechanistic understanding of the link between collagen remodelling and the nutrient environment in the metastatic niche.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Metastasis/pathology , Pyruvic Acid/metabolism , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Cell Line, Tumor , Collagen/chemistry , Collagen/metabolism , Disease Models, Animal , Enzyme Activation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Female , Humans , Hydroxylation/drug effects , Ketoglutaric Acids/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Procollagen-Proline Dioxygenase/metabolism , Pyruvic Acid/pharmacology , Tumor Microenvironment/drug effects
12.
Environ Int ; 125: 320-333, 2019 04.
Article in English | MEDLINE | ID: mdl-30739052

ABSTRACT

Across the 28 EU member states there were nearly half a million premature deaths in 2015 as a result of exposure to PM2.5, O3 and NO2. To set the target for air quality levels and avoid negative impacts for human and ecosystems health, the National Emission Ceilings Directive (NECD, 2016/2284/EU) sets objectives for emission reduction for SO2, NOx, NMVOCs, NH3 and PM2.5 for each Member State as percentages of reduction to be reached in 2020 and 2030 compared to the emission levels into 2005. One of the innovations of NECD is Article 9, that mentions the issue of "monitoring air pollution impacts" on ecosystems. We provide a clear picture of what is available in term of monitoring network for air pollution impacts on Italian ecosystems, summarizing what has been done to control air pollution and its effects on different ecosystems in Italy. We provide an overview of the impacts of air pollution on health of the Italian population and evaluate opportunities and implementation of Article 9 in the Italian context, as a case study beneficial for all Member States. The results showed that SO42- deposition strongly decreased in all monitoring sites in Italy over the period 1999-2017, while NO3- and NH4+ decreased more slightly. As a consequence, most of the acid-sensitive sites which underwent acidification in the 1980s partially recovered. The O3 concentration at forest sites showed a decreasing trend. Consequently, AOT40 (the metric identified to protect vegetation from ozone pollution) showed a decrease, even if values were still above the limit for forest protection (5000 ppb h-1), while PODy (flux-based metric under discussion as new European legislative standard for forest protection) showed an increase. National scale studies pointed out that PM10 and NO2 induced about 58,000 premature deaths (year 2005), due to cardiovascular and respiratory diseases. The network identified for Italy contains a good number of monitoring sites (6 for terrestrial ecosystem monitoring, 4 for water bodies monitoring and 11 for ozone impact monitoring) distributed over the territory and will produce a high number of monitored parameters for the implementation of the NECD.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , Ecosystem , Environmental Monitoring/methods , Humans , Italy
13.
Methods Mol Biol ; 1862: 53-66, 2019.
Article in English | MEDLINE | ID: mdl-30315459

ABSTRACT

Metabolomics and 13C tracer analysis are state-of-the-art techniques that allow determining the concentration of metabolites and the activity of metabolic pathways, respectively. Three dimensional (3D) cultures of cancer cells constitute an enriched in vitro environment that can be used to assay anchorage-independent growth, spheroid formation, and extracellular matrix production by (cancer) cells. Here, we describe how to perform metabolomics and 13C tracer analysis in 3D cultures of cancer cells.


Subject(s)
Carbon Isotopes/analysis , Cell Culture Techniques/methods , Metabolomics/methods , Cell Culture Techniques/instrumentation , Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Culture Media/chemistry , Extracellular Matrix/metabolism , Gas Chromatography-Mass Spectrometry/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Humans , Metabolomics/instrumentation , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
14.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30146488

ABSTRACT

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Subject(s)
Carnitine O-Palmitoyltransferase/metabolism , Energy Metabolism , Fatty Acids/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , NADP/metabolism , Receptor, Notch1/metabolism , Animals , Cell Proliferation , HEK293 Cells , Homeostasis , Humans , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Oxidative Stress
15.
Trends Cell Biol ; 28(8): 673-684, 2018 08.
Article in English | MEDLINE | ID: mdl-29747903

ABSTRACT

Metastasis to distant organs is a predictor of poor prognosis. Therefore, it is of paramount importance to understand the mechanisms that impinge on the different steps of the metastatic cascade. Recent work has revealed that particular metabolic pathways are rewired in cancer cells to support their transition through the metastatic cascade, resulting in the formation of secondary tumors in distant organs. Indeed, metabolic rewiring induces signaling pathways during initial cancer invasion, circulating cancer cells depend on enhanced antioxidant defenses, and cancer cells colonizing a distant organ require increased ATP production. Moreover, the local environment of the metastatic niche dictates the metabolic pathways secondary tumors rely on. Here we describe mechanisms of metabolic rewiring associated with distinct steps of metastasis formation.


Subject(s)
Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Adenosine Triphosphate/metabolism , Animals , Humans
16.
Nat Commun ; 8: 15267, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28492237

ABSTRACT

Metastases are the leading cause of mortality in patients with cancer. Metastasis formation requires cancer cells to adapt their cellular phenotype. However, how metabolism supports this adaptation of cancer cells is poorly defined. We use 2D versus 3D cultivation to induce a shift in the cellular phenotype of breast cancer cells. We discover that proline catabolism via proline dehydrogenase (Prodh) supports growth of breast cancer cells in 3D culture. Subsequently, we link proline catabolism to in vivo metastasis formation. In particular, we find that PRODH expression and proline catabolism is increased in metastases compared to primary breast cancers of patients and mice. Moreover, inhibiting Prodh is sufficient to impair formation of lung metastases in the orthotopic 4T1 and EMT6.5 mouse models, without adverse effects on healthy tissue and organ function. In conclusion, we discover that Prodh is a potential drug target for inhibiting metastasis formation.


Subject(s)
Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Proline/metabolism , Adenosine Triphosphate , Aldehyde Dehydrogenase/metabolism , Animals , Cell Culture Techniques , Cell Line, Transformed , Cell Line, Tumor , Cell Proliferation , Humans , Lung Neoplasms/pathology , Mice, Inbred C57BL , Proline Oxidase/metabolism , Pyrroline Carboxylate Reductases , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , delta-1-Pyrroline-5-Carboxylate Reductase
17.
Cell Rep ; 17(3): 837-848, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27732858

ABSTRACT

Cellular proliferation depends on refilling the tricarboxylic acid (TCA) cycle to support biomass production (anaplerosis). The two major anaplerotic pathways in cells are pyruvate conversion to oxaloacetate via pyruvate carboxylase (PC) and glutamine conversion to α-ketoglutarate. Cancers often show an organ-specific reliance on either pathway. However, it remains unknown whether they adapt their mode of anaplerosis when metastasizing to a distant organ. We measured PC-dependent anaplerosis in breast-cancer-derived lung metastases compared to their primary cancers using in vivo 13C tracer analysis. We discovered that lung metastases have higher PC-dependent anaplerosis compared to primary breast cancers. Based on in vitro analysis and a mathematical model for the determination of compartment-specific metabolite concentrations, we found that mitochondrial pyruvate concentrations can promote PC-dependent anaplerosis via enzyme kinetics. In conclusion, we show that breast cancer cells proliferating as lung metastases activate PC-dependent anaplerosis in response to the lung microenvironment.


Subject(s)
Breast Neoplasms/pathology , Citric Acid Cycle , Lung Neoplasms/enzymology , Lung Neoplasms/secondary , Pyruvate Carboxylase/metabolism , Acetyl Coenzyme A/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Carbon Isotopes , Cell Compartmentation , Cell Line, Tumor , Cytosol/metabolism , Female , Humans , Isotope Labeling , Mitochondria/metabolism , Pyruvic Acid/metabolism , Tumor Microenvironment
18.
Handb Exp Pharmacol ; 233: 321-53, 2016.
Article in English | MEDLINE | ID: mdl-25912014

ABSTRACT

Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, the aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor-positive breast cancer, early- and late-stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g., Warburg versus reverse Warburg metabolism). Yet, for each of the cancers, their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.


Subject(s)
Neoplasms/metabolism , Breast Neoplasms/metabolism , Female , Humans , Liver Neoplasms/metabolism , Male , Neoplasms/drug therapy , Organ Specificity , Prostatic Neoplasms/metabolism , Tumor Microenvironment
20.
Biochem Biophys Res Commun ; 464(3): 755-61, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26164231

ABSTRACT

Met Activating Genetically Improved Chimeric Factor 1 (Magic-F1) is a human recombinant protein, derived from dimerization of the receptor-binding domain of hepatocyte growth factor. Previous experiments demonstrate that in transgenic mice, the skeletal muscle specific expression of Magic-F1 can induce a constitutive muscular hypertrophy, improving running performance and accelerating muscle regeneration after injury. In order to evaluate the therapeutic potential of Magic-F1, we tested its effect on multipotent and pluripotent stem cells. In murine mesoangioblasts (adult vessel-associated stem cells), the presence of Magic-F1 did not alter their osteogenic, adipogenic or smooth muscle differentiation ability. However, when analyzing their myogenic potential, mesoangioblasts expressing Magic-F1 differentiated spontaneously into myotubes. Finally, Magic-F1 inducible cassette was inserted into a murine embryonic stem cell line by homologous recombination. When embryonic stem cells were subjected to myogenic differentiation, the presence of Magic-F1 resulted in the upregulation of Pax3 and Pax7 that enhanced the myogenic commitment of transgenic pluripotent stem cells. Taken together our results candidate Magic-F1 as a potent myogenic stimulator, able to enhance muscular differentiation from both adult and pluripotent stem cells.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/physiology , Muscle Development/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Mice , Mice, Transgenic , Muscle Development/genetics , PAX3 Transcription Factor , PAX7 Transcription Factor/genetics , Paired Box Transcription Factors/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...