Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
J Vis Exp ; (208)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975751

ABSTRACT

The usage of histology to investigate immune cell diversity in tissue sections such as those derived from the central nervous system (CNS) is critically limited by the number of fluorescent parameters that can be imaged at a single time. Most immune cell subsets have been defined using flow cytometry by using complex combinations of protein markers, often requiring four or more parameters to conclusively identify, which is beyond the capabilities of most conventional microscopes. As flow cytometry dissociates tissues and loses spatial information, there is a need for techniques that can retain spatial information while interrogating the roles of complex cell types. These issues are addressed here by creating a method for expanding the number of fluorescent parameters that can be imaged by collecting the signals of spectrally overlapping fluorophores and using spectral unmixing to separate the signals of each individual fluorophore. These images are then processed using an analysis pipeline to take high-parameter histology images and extract single cells from these images so that the unique fluorescent properties of each cell can be analyzed at a single-cell level. Using flow cytometry-like gating strategies, cells can then be profiled into subsets and mapped back onto the histology sections to not only quantify their abundance, but also establish how they interact with the tissue environment. Overall, the simplicity and potential of using histoflow cytometry to study complex immune populations in histology sections is demonstrated.


Subject(s)
Flow Cytometry , Animals , Flow Cytometry/methods , Mice , Fluorescent Dyes/chemistry
2.
Article in English | MEDLINE | ID: mdl-38971385

ABSTRACT

INTRODUCTION: Local failure rates after treatment for locally advanced non-small-cell lung cancer (NSCLC) remain high. Efforts to improve local control with uniform dose-escalation or dose-escalation to mid-treatment PET-avid residual disease have been limited by heightened toxicity. This trial aimed to refine response-based adaptive radiation (RT) and minimize toxicity by incorporating FDG-PET and V/Q SPECT imaging mid-treatment. METHODS: 47 patients with Stage IIA-III unresectable NSCLC were prospectively enrolled in this single-institution trial (NCT02492867). Patients received concurrent chemoradiation with personalized response-based adaptive RT over 30 fractions incorporating V/Q SPECT and FDG-PET. The first 21 fractions (46.2Gy at 2.2 Gy/fraction) were delivered to the tumor while minimizing dose to SPECT-defined functional lung. The plan was then adapted for the final 9 fractions (2.2-3.8Gy/fraction) up to a total of 80.4Gy, based on mid-treatment FDG-PET tumor response to escalate dose to residual tumor while minimizing dose to SPECT-defined functional lung. Non-progressing patients received consolidative carboplatin/paclitaxel or durvalumab. The primary endpoint of the study was ≥ grade 2 lung and esophageal toxicities. Secondary endpoints included time to local progression, tumor response, and overall survival. RESULTS: At one year post-treatment, the rates of grade 2 and grade 3 pneumonitis were 21.3% and 2.1%, respectively, with no difference in pneumonitis rates among patients who received and did not receive adjuvant durvalumab (p=0.74). While there were no grade 3 esophageal-related toxicities, 66.0% of patients experienced grade 2 esophagitis. 1- and 2-year local control rates were 94.5% (95% CI, 87.4% - 100%) and 87.5% (95% CI, 76.7% - 100%), respectively. Overall survival was 82.8% (95% CI, 72.6% -94.4%) at 1 year and 62.3% (95% CI, 49.6%-78.3%) at 2 years. CONCLUSIONS: Response-based adaptive dose-escalation accounting for tumor change and normal tissue function during treatment provided excellent local control, comparable toxicity to standard chemoradiation, and did not increase toxicity with adjuvant immunotherapy.

3.
Cancer ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853532

ABSTRACT

BACKGROUND: Despite randomized trials demonstrating a mortality benefit to low-dose computed tomography screening to detect lung cancer, uptake of lung cancer screening (LCS) has been slow, and the benefits of screening remain unclear in clinical practice. METHODS: This study aimed to assess the impact of screening among patients in the Veterans Health Administration (VA) health care system diagnosed with lung cancer between 2011 and 2018. Lung cancer stage at diagnosis, lung cancer-specific survival, and overall survival between patients with cancer who did and did not receive screening before diagnosis were evaluated. We used Cox regression modeling and inverse propensity weighting analyses with lead time bias adjustment to correlate LCS exposure with patient outcomes. RESULTS: Of 57,919 individuals diagnosed with lung cancer in the VA system between 2011 and 2018, 2167 (3.9%) underwent screening before diagnosis. Patients with screening had higher rates of stage I diagnoses (52% vs. 27%; p ≤ .0001) compared to those who had no screening. Screened patients had improved 5-year overall survival rates (50.2% vs. 27.9%) and 5-year lung cancer-specific survival (59.0% vs. 29.7%) compared to unscreened patients. Among screening-eligible patients who underwent National Comprehensive Cancer Network guideline-concordant treatment, screening resulted in substantial reductions in all-cause mortality (adjusted hazard ratio [aHR], 0.79; 95% confidence interval [CI], 0.67-0.92; p = .003) and lung-specific mortality (aHR, 0.61; 95% CI, 0.50-0.74; p < .001). CONCLUSIONS: While LCS uptake remains limited, screening was associated with earlier stage diagnoses and improved survival. This large national study corroborates the value of LCS in clinical practice; efforts to widely adopt this vital intervention are needed.

4.
Clin Transl Sci ; 17(6): e13827, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924306

ABSTRACT

For the same age, sex, and dosage, there can be significant variation in fertility outcomes in childhood cancer survivors. Genetics may explain this variation. This study aims to: (i) review the genetic contributions to infertility, (ii) search for pharmacogenomic studies looking at interactions of cancer treatment, genetic predisposition and fertility-related outcomes. Systematic searches in MEDLINE Ovid, Embase Classic+Embase, and PubMed were conducted using the following selection criteria: (i) pediatric, adolescent, and young adult cancer survivors, below 25 years old at the time of diagnosis, (ii) fertility outcome measures after cancer therapy, (iii) genetic considerations. Studies were excluded if they were (i) conducted in animal models, (ii) were not published in English, (iii) editorial letters, (iv) theses. Articles were screened in Covidence by at least two independent reviewers, followed by data extraction and a risk of bias assessment using the Quality in Prognostic Studies tool. Eight articles were reviewed with a total of 29 genes. Outcome measures included sperm concentration, azoospermia, AMH levels, assessment of premature menopause, ever being pregnant or siring a pregnancy. Three studies included replication cohorts, which attempted replication of SNP findings for NPY2R, BRSK1, FANCI, CYP2C19, CYP3A4, and CYP2B6. Six studies were rated with a high risk of bias. Differing methods may explain a lack of replication, and small cohorts may have contributed to few significant findings. Larger, prospective longitudinal studies with an unbiased genome-wide focus will be important to replicate significant results, which can be applied clinically.


Subject(s)
Cancer Survivors , Fertility , Neoplasms , Adolescent , Child , Female , Humans , Male , Young Adult , Antineoplastic Agents/adverse effects , Cancer Survivors/statistics & numerical data , Fertility/genetics , Fertility/drug effects , Infertility/genetics , Infertility/etiology , Infertility/therapy , Neoplasms/genetics , Neoplasms/drug therapy , Pharmacogenetics , Pharmacogenomic Testing
5.
BMJ Open ; 14(5): e085115, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760050

ABSTRACT

INTRODUCTION: DNA-informed prescribing (termed pharmacogenomics, PGx) is the epitome of personalised medicine. Despite international guidelines existing, its implementation in paediatric oncology remains sparse. METHODS AND ANALYSIS: Minimising Adverse Drug Reactions and Verifying Economic Legitimacy-Pharmacogenomics Implementation in Children is a national prospective, multicentre, randomised controlled trial assessing the impact of pre-emptive PGx testing for actionable PGx variants on adverse drug reaction (ADR) incidence in patients with a new cancer diagnosis or proceeding to haematopoetic stem cell transplant. All ADRs will be prospectively collected by surveys completed by parents/patients using the National Cancer Institute Pediatric Patient Reported [Ped-PRO]-Common Terminology Criteria for Adverse Events (CTCAE) (weeks 1, 6 and 12). Pharmacist will assess for causality and severity in semistructured interviews using the CTCAE and Liverpool Causality Assessment Tool. The primary outcome is a reduction in ADRs among patients with actionable PGx variants, where an ADR will be considered as any CTCAE grade 2 and above for non-haematological toxicities and any CTCAE grade 3 and above for haematological toxicities Cost-effectiveness of pre-emptive PGx (secondary outcome) will be compared with standard of care using hospital inpatient and outpatient data along with the validated Childhood Health Utility 9D Instrument. Power and statistics considerations: A sample size of 440 patients (220 per arm) will provide 80% power to detect a 24% relative risk reduction in the primary endpoint of ADRs (two-sided α=5%, 80% vs 61%), allowing for 10% drop-out. ETHICS AND DISSEMINATION: The ethics approval of the trial has been obtained from the Royal Children's Hospital Ethics Committee (HREC/89083/RCHM-2022). The ethics committee of each participating centres nationally has undertaken an assessment of the protocol and governance submission. TRIAL REGISTRATION NUMBER: NCT05667766.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacogenetics , Humans , Child , Drug-Related Side Effects and Adverse Reactions/prevention & control , Prospective Studies , Randomized Controlled Trials as Topic , Neoplasms/drug therapy , Neoplasms/genetics , Multicenter Studies as Topic , Precision Medicine/economics , Hematopoietic Stem Cell Transplantation
6.
PeerJ ; 12: e17180, 2024.
Article in English | MEDLINE | ID: mdl-38618562

ABSTRACT

Skeletal remains of sauropod dinosaurs have been known from Australia for over 100 years. Unfortunately, the classification of the majority of these specimens to species level has historically been impeded by their incompleteness. This has begun to change in the last 15 years, primarily through the discovery and description of several partial skeletons from the Cenomanian-lower Turonian (lower Upper Cretaceous) Winton Formation in central Queensland, with four species erected to date: Australotitan cooperensis, Diamantinasaurus matildae, Savannasaurus elliottorum, and Wintonotitan wattsi. The first three of these appear to form a clade (Diamantinasauria) of early diverging titanosaurs (or close relatives of titanosaurs), whereas Wintonotitan wattsi is typically recovered as a distantly related non-titanosaurian somphospondylan. Through the use of 3D scanning, we digitised numerous specimens of Winton Formation sauropods, facilitating enhanced comparison between type and referred specimens, and heretofore undescribed specimens. We present new anatomical information on the holotype specimen of Diamantinasaurus matildae, and describe new remains pertaining to twelve sauropod individuals. Firsthand observations and digital analysis enabled previously proposed autapomorphic features of all four named Winton Formation sauropod species to be identified in the newly described specimens, with some specimens exhibiting putative autapomorphies of more than one species, prompting a reassessment of their taxonomic validity. Supported by a specimen-level phylogenetic analysis, we suggest that Australotitan cooperensis is probably a junior synonym of Diamantinasaurus matildae, but conservatively regard it herein as an indeterminate diamantinasaurian, meaning that the Winton Formation sauropod fauna now comprises three (rather than four) valid diamantinasaurian species: Diamantinasaurus matildae, Savannasaurus elliottorum, and Wintonotitan wattsi, with the latter robustly supported as a member of the clade for the first time. We refer some of the newly described specimens to these three species and provide revised diagnoses, with some previously proposed autapomorphies now regarded as diamantinasaurian synapomorphies. Our newly presented anatomical data and critical reappraisal of the Winton Formation sauropods facilitates a more comprehensive understanding of the mid-Cretaceous sauropod palaeobiota of central Queensland.


Subject(s)
Dinosaurs , Humans , Animals , Queensland , Phylogeny , Australia , Body Remains
7.
J Proteome Res ; 23(4): 1285-1297, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38480473

ABSTRACT

C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.


Subject(s)
AMP-Activated Protein Kinases , Muscle Fibers, Slow-Twitch , Mice , Humans , Animals , Muscle Fibers, Slow-Twitch/metabolism , AMP-Activated Protein Kinases/metabolism , Proteomics/methods , Calcium/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/metabolism , Muscle Contraction , Mass Spectrometry
8.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38334329

ABSTRACT

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Subject(s)
Angiotensin-Converting Enzyme 2 , Kidney , Organoids , SARS-CoV-2 , Virus Internalization , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/virology , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Kidney/virology , Lisinopril/pharmacology , Lisinopril/metabolism , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/virology , Pandemics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/virology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/virology , Receptors, Coronavirus/metabolism , Models, Biological , Serine Endopeptidases/metabolism , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation/drug effects , Stem Cells/cytology
9.
Int J Radiat Oncol Biol Phys ; 118(4): 963-970, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37793573

ABSTRACT

PURPOSE: Adjuvant durvalumab after definitive chemoradiotherapy (CRT) for unresectable stage III non-small cell lung cancer (NSCLC) is well-tolerated in clinical trials. However, pneumonitis rates outside of clinical trials remain poorly defined with CRT followed by durvalumab. We aimed to describe the influence of durvalumab on pneumonitis rates among a large cohort of patients with stage III NSCLC. METHODS AND MATERIALS: We studied patients with stage III NSCLC in the national Veterans Health Administration from 2015 to 2021 who received concurrent CRT alone or with adjuvant durvalumab. We defined pneumonitis as worsening respiratory symptoms with radiographic changes within 2 years of CRT and graded events according to National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03. We used Cox regression to analyze risk factors for pneumonitis and the effect of postbaseline pneumonitis on overall survival. RESULTS: Among 1994 patients (989 CRT alone, 1005 CRT followed by adjuvant durvalumab), the 2-year incidence of grade 2 or higher pneumonitis was 13.9% for CRT alone versus 22.1% for CRT plus durvalumab (unadjusted P < .001). On multivariable analysis, durvalumab was associated with higher risk of grade 2 pneumonitis (hazard ratio, 1.45; 95% CI, 1.09-1.93; P = .012) but not grade 3 to 5 pneumonitis (P = .2). Grade 3 pneumonitis conferred worse overall survival (hazard ratio, 2.51; 95% CI, 2.06-3.05; P < .001) but grade 2 pneumonitis did not (P = .4). CONCLUSIONS: Adjuvant durvalumab use was associated with increased risk of low-grade but not higher-grade pneumonitis. Reassuringly, low-grade pneumonitis did not increase mortality risk. We observed increased rates of high-grade pneumonitis relative to clinical trials; the reasons for this require further study.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pneumonia , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Adjuvants, Immunologic , Pneumonia/chemically induced , Pneumonia/epidemiology , Chemoradiotherapy/adverse effects
10.
Urology ; 184: 135-141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951360

ABSTRACT

OBJECTIVE: To examine survival and disease control outcomes, including metastasis-related survival outcomes, in a large contemporary cohort of patients undergoing radical prostatectomy for localized prostate cancer. METHODS: We conducted a retrospective study of men with localized prostate cancer treated with radical prostatectomy from 2005 to 2015 with follow-up through 2019 in the Veterans Health Administration. We defined biochemical recurrence (BCR) as a prostate-specific antigen ≥0.2 ng/mL. We used a validated natural language processing encoded dataset to identify incident metastatic prostate cancer. We estimated overall survival from time of surgery, time of BCR, and time of first metastasis using the Kaplan-Meier method. We then estimated time from surgery to BCR, BCR to metastatic disease, and prostate-cancer-specific survival from various time points using cumulative incidence considering competing risk of death. RESULTS: Of 21,992 men undergoing radical prostatectomy, we identified 5951 (27%) who developed BCR. Of men with BCR, 677 (11%) developed metastases. We estimated the 10-year cumulative incidence of BCR and metastases after BCR were 28% and 20%, respectively. Median overall survival after BCR was 14years, with 10-year survival of 70%. From the time of metastasis, median overall survival approached 7years, with 10-year overall survival of 34%. Prostate cancer-specific survival for the entire cohort at 10years was 94%. CONCLUSION: In this large contemporary national cohort, survival for men with biochemically recurrent prostate cancer is longer than historical cohorts. When counseling patients and designing clinical studies, these updated estimates may serve as more reliable reflections of current outcomes.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Retrospective Studies , Prostatic Neoplasms/pathology , Prostate-Specific Antigen , Prostatectomy/methods
11.
Cardiooncology ; 9(1): 45, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062530

ABSTRACT

BACKGROUND: Modern oncological therapies together with chemotherapy and radiotherapy have broadened the agents that can cause cardiac sequelae, which can manifest for pediatric oncology patients while on active treatment. Recommendations for high-risk patients who should be monitored in a pediatric cardio-oncology clinic have previously been developed by expert Delphi consensus by our group. In 2022 we opened our first multidisciplinary pediatric cardio-oncology clinic adhering to these recommendations in surveillance and management. OBJECTIVES: Our pediatric cardio-oncology clinic aimed to: (i) Document cardiovascular toxicities observed within a pediatric cardio-oncology clinic and. (ii) Evaluate the applicability of the Australian and New Zealand Pediatric Cardio-Oncology recommendations. METHODS: Monthly multidisciplinary cardio-oncology clinics were conducted in an Australian tertiary pediatric hospital. Structured standardised approaches to assessment were built into the electronic medical record (EMR). All patients underwent baseline echocardiogram and electrocardiogram assessment together with vital signs in conjunction with standard history and examination. RESULTS: Nineteen (54%) individuals had a documented cardiovascular toxicity or pre-existing risk factor prior to referral. The two most common cardiovascular toxicities documented during clinic review included Left Ventricular Dysfunction (LVD) and hypertension. Of note 3 (8.1%) patients had CTCAE grade III LVD. An additional 10 (27%) patients reviewed in clinic had CTCAE grade I hypertension. None of these patients had hypertension noted within their referral. Cascade testing for cardiac history was warranted in 2 (5.4%) of patients. CONCLUSIONS: Pediatric cardio-oncology clinics are likely beneficial to documenting previously unrecognised cardiotoxicity and relevant cardiac family histories, whilst providing an opportunity to address lifestyle risk factors.

12.
Pharmacol Res Perspect ; 11(6): e01150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38013228

ABSTRACT

Pharmacogenomics remains underutilized in clinical practice, despite the existence of internationally recognized, evidence-based guidelines. This systematic review aims to understand enablers and barriers to pharmacogenomics implementation in pediatric oncology by assessing the knowledge, attitudes, and practice of healthcare professionals and consumers. Medline, Embase, Emcare, and PsycINFO database searches identified 146 relevant studies of which only three met the inclusion criteria. These studies reveal that consumers were concerned with pharmacogenomic test costs, insurance discrimination, data sharing, and privacy. Healthcare professionals possessed mostly positive attitudes toward pharmacogenomic testing yet identified lack of experience and training as barriers to implementation. Education emerged as the key enabler, reported in all three studies and both healthcare professionals and consumer groups. However, despite the need for education, no studies utilizing a pediatric oncology consumer or healthcare professional group have reported on the implementation or analysis of a pharmacogenomic education program in pediatric oncology. Increased access to guidelines, expert collaborations and additional guidance interpreting results were further enablers established by healthcare professionals. The themes identified mirror those reported in broader pediatric genetic testing literature. As only a small number of studies met inclusion criteria for this review, further research is warranted to elicit implementation determinants and advance pediatric pharmacogenomics.


Subject(s)
Neoplasms , Pharmacogenetics , Humans , Child , Health Knowledge, Attitudes, Practice , Health Personnel/education , Medical Oncology , Neoplasms/drug therapy , Neoplasms/genetics
13.
Genome Biol ; 24(1): 209, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723583

ABSTRACT

Identifying spatially variable genes (SVGs) is a key step in the analysis of spatially resolved transcriptomics data. SVGs provide biological insights by defining transcriptomic differences within tissues, which was previously unachievable using RNA-sequencing technologies. However, the increasing number of published tools designed to define SVG sets currently lack benchmarking methods to accurately assess performance. This study compares results of 6 purpose-built packages for SVG identification across 9 public and 5 simulated datasets and highlights discrepancies between results. Additional tools for generation of simulated data and development of benchmarking methods are required to improve methods for identifying SVGs.


Subject(s)
Benchmarking , Transcriptome , Gene Expression Profiling
14.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37607539

ABSTRACT

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Subject(s)
Fabry Disease , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , RNA , Fabry Disease/genetics , Fabry Disease/therapy , RNA, Messenger
15.
Cancer ; 129(20): 3326-3333, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37389814

ABSTRACT

PURPOSE: Accurate information regarding real-world outcomes after contemporary radiation therapy for localized prostate cancer is important for shared decision-making. Clinically relevant end points at 10 years among men treated within a national health care delivery system were examined. METHODS: National administrative, cancer registry, and electronic health record data were used for patients undergoing definitive radiation therapy with or without concurrent androgen deprivation therapy within the Veterans Health Administration from 2005 to 2015. National Death Index data were used through 2019 for overall and prostate cancer-specific survival and identified date of incident metastatic prostate cancer using a validated natural language processing algorithm. Metastasis-free, prostate cancer-specific, and overall survival using Kaplan-Meier methods were estimated. RESULTS: Among 41,735 men treated with definitive radiation therapy, the median age at diagnosis was 65 years and median follow-up was 8.7 years. Most had intermediate (42%) and high-risk (33%) disease, with 40% receiving androgen deprivation therapy as part of initial therapy. Unadjusted 10-year metastasis-free survival was 96%, 92%, and 80% for low-, intermediate-, and high-risk disease. Similarly, unadjusted 10-year prostate cancer-specific survival was 98%, 97%, and 90% for low-, intermediate-, and high-risk disease. The unadjusted overall survival was lower across increasing disease risk categories at 77%, 71%, and 62% for low-, intermediate-, and high-risk disease (p < .001). CONCLUSIONS: These data provide population-based 10-year benchmarks for clinically relevant end points, including metastasis-free survival, among patients with localized prostate cancer undergoing radiation therapy using contemporary techniques. The survival rates for high-risk disease in particular suggest that outcomes have recently improved.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Androgen Antagonists/therapeutic use , Androgens , Disease-Free Survival , Prostate-Specific Antigen , Delivery of Health Care , Treatment Outcome
16.
Stem Cell Reports ; 18(6): 1308-1324, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315523

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Stem Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Lung
17.
Development ; 150(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37260361

ABSTRACT

Human pluripotent stem cells (hPSCs), derived from individuals or genetically modified with disease-related mutations and variants, have revolutionised studies of human disease. Researchers are beginning to exploit the extraordinary potential of stem cell technology to screen for new drugs to treat intractable diseases, ideally without side-effects. However, a major problem is that the differentiated cell types on which these models are based are immature; they resemble fetal and not adult cells. Here, we discuss the nature and hurdles of hPSC maturation, using cardiomyocytes as an example. We review methods used to induce cardiomyocyte maturation in culture and consider remaining challenges for their integration into research on human disease and drug development pipelines.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Myocytes, Cardiac/metabolism , Cell Differentiation
18.
J Immunol ; 210(12): 2038-2049, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37133337

ABSTRACT

Immunofluorescence histology is commonly used to study immune cells in tissues where the number of fluorescence parameters is normally limited to four or less. This makes it impossible to interrogate multiple subsets of immune cells in tissue with the same precision as flow cytometry. The latter, however, dissociates tissues and loses spatial information. To bridge the gap between these technologies, we developed a workflow to expand the number of fluorescence parameters that can be imaged on widely available microscopes. We instituted a method for identifying single cells in tissue and exporting the data for flow cytometry-based analysis. This histoflow cytometry technique successfully separates spectrally overlapping dyes and identifies similar numbers of cells in tissue sections as manual cell counts. Populations identified through flow cytometry-like gating strategies are mapped to the original tissue to spatially localize gated subsets. We applied histoflow cytometry to immune cells in the spinal cords of mice with experimental autoimmune encephalomyelitis. We ascertained that B cells, T cells, neutrophils, and phagocytes differed in their frequencies in CNS immune cell infiltrates and were increased relative to healthy controls. Spatial analysis determined that B cells and T cells/phagocytes preferentially localized to CNS barriers and parenchyma, respectively. By spatially mapping these immune cells, we inferred their preferred interacting partners within immune cell clusters. Overall, we demonstrate the ease and utility of histoflow cytometry, which expands the number of fluorescent channels used in conventional immunofluorescence and enables quantitative cytometry and spatial localization of histological analyses.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Phagocytes , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , T-Lymphocytes , Neutrophils/pathology , Single-Cell Analysis/methods , Flow Cytometry/methods
19.
R Soc Open Sci ; 10(4): 221618, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37063988

ABSTRACT

Titanosaurian sauropod dinosaurs were diverse and abundant throughout the Cretaceous, with a global distribution. However, few titanosaurian taxa are represented by multiple skeletons, let alone skulls. Diamantinasaurus matildae, from the lower Upper Cretaceous Winton Formation of Queensland, Australia, was heretofore represented by three specimens, including one that preserves a braincase and several other cranial elements. Herein, we describe a fourth specimen of Diamantinasaurus matildae that preserves a more complete skull-including numerous cranial elements not previously known for this taxon-as well as a partial postcranial skeleton. The skull of Diamantinasaurus matildae shows many similarities to that of the coeval Sarmientosaurus musacchioi from Argentina (e.g. quadratojugal with posterior tongue-like process; braincase with more than one ossified exit for cranial nerve V; compressed-cone-chisel-like teeth), providing further support for the inclusion of both taxa within the clade Diamantinasauria. The replacement teeth within the premaxilla of the new specimen are morphologically congruent with teeth previously attributed to Diamantinasaurus matildae, and Diamantinasauria more broadly, corroborating those referrals. Plesiomorphic characters of the new specimen include a sacrum comprising five vertebrae (also newly demonstrated in the holotype of Diamantinasaurus matildae), rather than the six or more that typify other titanosaurs. However, we demonstrate that there have been a number of independent acquisitions of a six-vertebrae sacrum among Somphospondyli and/or that there have been numerous reversals to a five-vertebrae sacrum, suggesting that sacral count is relatively plastic. Other newly identified plesiomorphic features include: the overall skull shape, which is more similar to brachiosaurids than 'derived' titanosaurs; anterior caudal centra that are amphicoelous, rather than procoelous; and a pedal phalangeal formula estimated as 2-2-3-2-0. These features are consistent with either an early-branching position within Titanosauria, or a position just outside the titanosaurian radiation, for Diamantinasauria, as indicated by alternative character weighting approaches applied in our phylogenetic analyses, and help to shed light on the early assembly of titanosaurian anatomy that has until now been obscured by a poor fossil record.

20.
Cell Rep ; 42(5): 112322, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37105170

ABSTRACT

Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor ß (PDGFRß) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.


Subject(s)
Endothelial Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Pericytes/metabolism , Signal Transduction , Organoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL