Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Bioresour Technol ; 340: 125669, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34339996

ABSTRACT

This study aims to elucidate the mechanisms governing the harvesting efficiency of Chlorella vulgaris by flocculation using a cationic polymer. Flocculation efficiency increased as microalgae culture matured (i.e. 35-45, 75, and > 97% efficiency at early, late exponential, and stationary phase, respectively. Unlike the negative impact of phosphate on flocculation in traditional wastewater treatment; here, phosphorous residue did not influence the flocculation efficiency of C. vulgaris. The observed dependency of flocculation efficiency on growth phase was driven by changes in microalgal cell properties. Microalgal extracellular polymeric substances (EPS) in both bound and free forms at stationary phase were two and three times higher than those at late and early exponential phase, respectively. Microalgae cells also became more negatively charged as they matured. Negatively charged and high EPS content together with the addition of high molecular weight and positively charged polymer could facilitate effective flocculation via charge neutralisation and bridging.


Subject(s)
Chlorella vulgaris , Microalgae , Biomass , Flocculation , Polymers
2.
Sci Total Environ ; 752: 141708, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32892040

ABSTRACT

Flocculation is a low-cost harvesting technique for microalgae biomass production, but flocculation efficiency is species dependent. In this study, we investigated the efficacy of two synthetic (polyacrylamide) and one natural (chitosan) flocculants against three algal species: the cyanobacterium Synechocystis sp., the freshwater Chlorella vulgaris, and the marine Phaeodactylum tricornutum at laboratory and pilot scales to evaluate harvesting efficiency, biomass integrity and media recycling. Growth phase affected the harvesting efficiency of the eukaryotic microalgae. The flocculation was optimal at stationary phase with high flocculation efficiency achieved using polyacrylamides at 24-36 mg/g dry weight. The effect of the flocculants on the harvested biomass was investigated. The flocculated Synechocystis sp. showed a higher proportion of compromised cells compared to C. vulgaris and P. tricornutum likely due to differences in cell walls composition. Compromised cells could lead to the release of valuable products into the surrounding growth media during flocculation. The residual culture media was recycled once with no impact on cell growth for all treatments and algal species. The flocculation technique was demonstrated at pilot-scale using 350 L microalgal suspension, showing an efficiency of 82-90% at a polyacrylamide dosage of 6.5-10 mg/L. This efficiency and the biomass quality are comparable to the laboratory-scale results. Overall, results indicate that polyacrylamide flocculants work on a wide range of species without the need for pre-treatment. The information generated in this study can contribute to making the microalgae industry more competitive.


Subject(s)
Chlorella vulgaris , Microalgae , Biomass , Flocculation , Fresh Water
3.
Sci Total Environ ; 755(Pt 1): 142412, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33032127

ABSTRACT

This study aims to examine the flocculation efficiency of Porphyridium purpureum (i.e. a red marine microalga with high content of pigments and fatty acids) grown in seawater medium using polyacrylamide polymers and alkaline flocculation. Polymers Flopam™ and FO3801 achieved the highest flocculation efficiency of over 99% at the optimal dose of 21 mg per g of dry biomass through charge neutralisation and bridging mechanism. The addition of sodium hydroxide, potassium hydroxide, and sodium carbonate also achieved flocculation efficiency of 98 and 91%, respectively, but high doses were required (i.e. > 500 mg per g of dry biomass). Calcium hydroxide was not as effective and could only achieve 75% flocculation efficiency. Precipitation of magnesium hydroxide was identified as the major cause of hydroxide-induced flocculation. On the other hand, sodium carbonate addition induced flocculation via both magnesium and calcium carbonate co-precipitation. The large mass of precipitates caused a sweeping effect and enmeshed the microalgal cells to trigger sedimentation. Cell membrane integrity analysis of flocculated P. purpureum indicated that polyacrylamide polymers led to significant compromised cells (i.e. 96%), compared to the alkaline bases (70-96% compromised cells). These results appear to be the first to demonstrate the high efficiency of polyacrylamide polymer and alkaline flocculation of P. purpureum but at the expense of the biomass quality.


Subject(s)
Microalgae , Porphyridium , Acrylic Resins , Biomass , Flocculation , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL