Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 22(1)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-33285902

ABSTRACT

Existence of the eigenvalues of the discrete-time quantum walks is deeply related to localization of the walks. We revealed, for the first time, the distributions of the eigenvalues given by the splitted generating function method (the SGF method) of the space-inhomogeneous quantum walks in one dimension we had treated in our previous studies. Especially, we clarified the characteristic parameter dependence for the distributions of the eigenvalues with the aid of numerical simulation.

2.
Rep Prog Phys ; 80(5): 056001, 2017 05.
Article in English | MEDLINE | ID: mdl-28350544

ABSTRACT

This article reviews theoretical and experimental advances in Efimov physics, an array of quantum few-body and many-body phenomena arising for particles interacting via short-range resonant interactions, that is based on the appearance of a scale-invariant three-body attraction theoretically discovered by Vitaly Efimov in 1970. This three-body effect was originally proposed to explain the binding of nuclei such as the triton and the Hoyle state of carbon-12, and later considered as a simple explanation for the existence of some halo nuclei. It was subsequently evidenced in trapped ultra-cold atomic clouds and in diffracted molecular beams of gaseous helium. These experiments revealed that the previously undetermined three-body parameter introduced in the Efimov theory to stabilise the three-body attraction typically scales with the range of atomic interactions. The few- and many-body consequences of the Efimov attraction have been since investigated theoretically, and are expected to be observed in a broader spectrum of physical systems.

3.
Phys Rev Lett ; 112(10): 105301, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24679303

ABSTRACT

The low-energy spectrum of three particles interacting via nearly resonant two-body interactions in the Efimov regime is set by the so-called three-body parameter. We show that the three-body parameter is essentially determined by the zero-energy two-body correlation. As a result, we identify two classes of two-body interactions for which the three-body parameter has a universal value in units of their effective range. One class involves the universality of the three-body parameter recently found in ultracold atom systems. The other is relevant to short-range interactions that can be found in nuclear physics and solid-state physics.

SELECTION OF CITATIONS
SEARCH DETAIL