Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
Pediatr Infect Dis J ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38985986

ABSTRACT

BACKGROUND: There is limited evidence regarding the proportion of wheeze in young children attributable to respiratory syncytial virus lower respiratory tract infections (RSV-LRTI) occurring early in life. This cohort study prospectively determined the population attributable risk (PAR) and risk percent (PAR%) of wheeze in 2-<6-year-old children previously surveilled in a primary study for RSV-LRTI from birth to their second birthday (RSV-LRTI<2Y). METHODS: From 2013 to 2021, 2-year-old children from 8 countries were enrolled in this extension study (NCT01995175) and were followed through quarterly surveillance contacts until their sixth birthday for the occurrence of parent-reported wheeze, medically-attended wheeze or recurrent wheeze episodes (≥4 episodes/year). PAR% was calculated as PAR divided by the cumulative incidence of wheeze in all participants. RESULTS: Of 1395 children included in the analyses, 126 had documented RSV-LRTI<2Y. Cumulative incidences were higher for reported (38.1% vs. 13.6%), medically-attended (30.2% vs. 11.8%) and recurrent wheeze outcomes (4.0% vs. 0.6%) in participants with RSV-LRTI<2Y than those without RSV-LRTI<2Y. The PARs for all episodes of reported, medically-attended and recurrent wheeze were 22.2, 16.6 and 3.1 per 1000 children, corresponding to PAR% of 14.1%, 12.3% and 35.9%. In univariate analyses, all 3 wheeze outcomes were strongly associated with RSV-LRTI<2Y (all global P < 0.01). Multivariable modeling for medically-attended wheeze showed a strong association with RSV-LRTI after adjustment for covariates (global P < 0.0001). CONCLUSIONS: A substantial amount of wheeze from the second to sixth birthday is potentially attributable to RSV-LRTI<2Y. Prevention of RSV-LRTI<2Y could potentially reduce wheezing episodes in 2-<6-year-old children.

2.
AJPM Focus ; 3(4): 100248, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39045125

ABSTRACT

Introduction: Longitudinal data on how acute respiratory illness (ARI) affects behavior, namely school or work participation, and nonpharmaceutical intervention (NPI) usage before and during the COVID-19 pandemic is limited. The authors assessed how ARIs and specific symptoms affected school, work, and health-related behaviors over time. Methods: From November 2019 to June 2021, participating households with children in King County, Washington, were remotely monitored for ARI symptoms weekly. Following ARIs, participants reported illness-related effects on school, work, and NPI use. Using logistic regression with generalized estimating equations, the authors examined associations between symptoms and behaviors. Results: Of 1,861 participants, 581 (31%) from 293 households reported 884 ARIs and completed one-week follow-up surveys. Compared with the prepandemic period, during the period of the pandemic pre-COVID-19 vaccine, ARI-related school (56% vs 10%, p<0.001) absenteeism decreased and masking increased (3% vs 28%, p<0.001). After vaccine authorization in December 2020, more ARIs resulted in masking (3% vs 48%, p<0.001), avoiding contact with non-household members (26% vs 58%, p<0.001), and staying home (37% vs 69%, p<0.001) compared with the prepandemic period. Constitutional symptoms such as fever were associated with work disruptions (OR=1.91; 95% CI=1.06, 3.43), staying home (OR=1.55; 95% CI=1.06, 2.27), and decreased contact with non-household members (OR=1.58; 95% CI=1.05, 2.36). Conclusions: This remote household study permitted uninterrupted tracking of behavioral changes in families with children before and during the COVID-19 pandemic, identifying increased use of some NPIs when ill but no additional illness-associated work or school disruptions.

3.
Open Forum Infect Dis ; 11(7): ofae314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39040482

ABSTRACT

Background: Respiratory syncytial virus (RSV)-associated lower respiratory tract infection contributes significantly to morbidity/mortality worldwide in low birthweight (LBW) infants (<2500 g). Studies have demonstrated decreased maternal immunoglobulin G (IgG) transfer of various antibodies to LBW infants. We aimed to evaluate naturally acquired RSV anti-prefusion F protein (anti-preF) antibody transfer in pregnancies with LBW versus normal birthweight (NBW) infants. Methods: In this cohort study conducted among pregnant individuals and their infants, we tested paired maternal and singleton infant cord samples for RSV anti-preF IgG via an electrochemiluminescence immunoassay, using linear regression to evaluate associations between LBW and anti-preF IgG. Covariates included seasonality, insurance, small-for-gestational-age birthweight, and gestational age at delivery. Results: We tested maternal/cord RSV anti-preF IgG from 54 and 110 pregnancies with LBW and NBW infants, respectively. Of LBW infants, 22 (40.7%) were born both preterm and with small-for-gestational-age birthweight. The median (interquartile range) gestational age at delivery and birthweight were 34.0 (31.7-37.1) weeks and 1902 (1393-2276) g for LBW infants versus 39.1 (38.3-39.9) weeks and 3323 (3109-3565) g for NBW infants (both P < .001). In unadjusted comparisons, preterm infants had significantly lower cord anti-preF IgG levels and cord-maternal IgG ratios compared with full-term infants, while LBW infants had significantly lower cord-maternal IgG ratios than NBW infants (all P < .01). After adjustment for covariates, there was no difference in cord-maternal IgG ratios (ß =-0.29 [95% confidence interval, -.63 to .05]) between LBW and NBW infants. Conclusions: We documented robust transfer of maternal RSV anti-preF IgG in pregnancies with both LBW and NBW infants. Further studies are needed to assess immune protection in at-risk infants.

4.
Cell Host Microbe ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39032493

ABSTRACT

Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.

5.
Pediatrics ; 154(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38841769

ABSTRACT

BACKGROUND: The coronavirus disease 2019 pandemic disrupted respiratory syncytial virus (RSV) seasonality resulting in early, atypical RSV seasons in 2021 and 2022, with an intense 2022 peak overwhelming many pediatric healthcare facilities. METHODS: We conducted prospective surveillance for acute respiratory illness during 2016-2022 at 7 pediatric hospitals. We interviewed parents, reviewed medical records, and tested respiratory specimens for RSV and other respiratory viruses. We estimated annual RSV-associated hospitalization rates in children aged <5 years and compared hospitalization rates and characteristics of RSV-positive hospitalized children over 4 prepandemic seasons (2016-2020) to those hospitalized in 2021 or 2022. RESULTS: There was no difference in median age or age distribution between prepandemic and 2021 seasons. Median age of children hospitalized with RSV was higher in 2022 (9.6 months vs 6.0 months, P < .001). RSV-associated hospitalization rates were higher in 2021 and 2022 than the prepandemic average across age groups. Comparing 2021 to 2022, RSV-associated hospitalization rates were similar among children <2 years of age; however, children aged 24 to 59 months had significantly higher rates of RSV-associated hospitalization in 2022 (rate ratio 1.68 [95% confidence interval 1.37-2.00]). More RSV-positive hospitalized children received supplemental oxygen and there were more respiratory virus codetections in 2022 than in prepandemic seasons (P < .001 and P = .003, respectively), but there was no difference in the proportion hypoxemic, mechanically ventilated, or admitted to intensive care. CONCLUSIONS: The atypical 2021 and 2022 RSV seasons resulted in higher hospitalization rates with similar disease severity to prepandemic seasons.


Subject(s)
Hospitalization , Respiratory Syncytial Virus Infections , Humans , Respiratory Syncytial Virus Infections/epidemiology , Hospitalization/statistics & numerical data , Hospitalization/trends , Infant , Child, Preschool , Male , Prospective Studies , Female , COVID-19/epidemiology , Seasons , Hospitals, Pediatric/statistics & numerical data , Infant, Newborn
6.
J Infect Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838218

ABSTRACT

BACKGROUND: The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well-characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells (PBMC) and sera were archived at approximately 1, 6, and 12 months post-symptom onset. METHODS: We compared antibody (N = 85) and T-cell responses (N = 26) to nucleocapsid (N) and spike (S) glycoprotein over time across four age strata: 6 months to 5 years, 5-9, 10-14, and 15-20 years. RESULTS: N-specific antibody responses declined over time, becoming undetectable in 26/32 (81%) children by approximately one year post-infection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson's r = 0.31, p = 0.008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children, and, along with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS: Our data reveal durable, age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-Ab responses overall, in comparison to declining antibody responses to N.

7.
Article in English | MEDLINE | ID: mdl-38860591

ABSTRACT

BACKGROUND: With the future epidemiology and evolution of SARS-CoV-2 uncertain, use of safe and effective COVID-19 vaccines in pediatric populations remains important. METHODS: We report data from two open-label substudies of an ongoing phase 1/2/3 master study (NCT05543616) investigating safety and immunogenicity of a variant-adapted bivalent COVID-19 vaccine encoding ancestral and Omicron BA.4/BA.5 spike proteins (bivalent BNT162b2). The open-label groups presented here evaluate dose 4 with bivalent BNT162b2 in 6-month-<12-year-olds who previously received three original (monovalent) BNT162b2 doses. In 6-month-<5-year-olds, primary immunogenicity objectives were to demonstrate superiority (neutralizing titer) and noninferiority (seroresponse rate) to Omicron BA.4/BA.5 and noninferiority (neutralizing titer and seroresponse rate) to SARS-CoV-2 ancestral strains in participants who received bivalent BNT162b2 dose 4 compared with a matched group who received three doses of original BNT162b2 in the pivotal pediatric study (NCT04816643). In 5-<12-year-olds, primary immunogenicity comparisons were descriptive. Reactogenicity and safety following vaccination were evaluated. RESULTS: In 6-month-<5-year-olds, dose 4 with bivalent BNT162b2 met predefined immunogenicity superiority and noninferiority criteria against Omicron BA.4/BA.5 and ancestral strains when compared with dose 3 of original BNT162b2. In 5-<12-year-olds, bivalent BNT162b2 induced robust Omicron BA.4/BA.5 and ancestral strain neutralizing titers comparable to dose 3 of original BNT162b2. The safety profile for dose 4 of bivalent BNT162b2 given as dose 4 was consistent with that of original BNT162b2 in 6 month-<12-year-olds. Reactogenicity events were generally mild-to-moderate. No adverse events led to discontinuation. CONCLUSIONS: These safety and immunogenicity data support a favorable benefit-risk profile for a variant-adapted BNT162b2 in children <12 years old.

8.
Nat Commun ; 15(1): 4164, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755171

ABSTRACT

Many studies have used mobile device location data to model SARS-CoV-2 dynamics, yet relationships between mobility behavior and endemic respiratory pathogens are less understood. We studied the effects of population mobility on the transmission of 17 endemic viruses and SARS-CoV-2 in Seattle over a 4-year period, 2018-2022. Before 2020, visits to schools and daycares, within-city mixing, and visitor inflow preceded or coincided with seasonal outbreaks of endemic viruses. Pathogen circulation dropped substantially after the initiation of COVID-19 stay-at-home orders in March 2020. During this period, mobility was a positive, leading indicator of transmission of all endemic viruses and lagging and negatively correlated with SARS-CoV-2 activity. Mobility was briefly predictive of SARS-CoV-2 transmission when restrictions relaxed but associations weakened in subsequent waves. The rebound of endemic viruses was heterogeneously timed but exhibited stronger, longer-lasting relationships with mobility than SARS-CoV-2. Overall, mobility is most predictive of respiratory virus transmission during periods of dramatic behavioral change and at the beginning of epidemic waves.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/epidemiology , SARS-CoV-2/isolation & purification , Washington/epidemiology , Pandemics , Cities/epidemiology , Seasons , Travel/statistics & numerical data
9.
J Pediatr ; 271: 114045, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38561048

ABSTRACT

OBJECTIVE: To assess medical costs of hospitalizations and emergency department (ED) care associated with respiratory syncytial virus (RSV) disease in children enrolled in the New Vaccine Surveillance Network. STUDY DESIGN: We used accounting and prospective surveillance data from 6 pediatric health systems to assess direct medical costs from laboratory-confirmed RSV-associated hospitalizations (n = 2007) and ED visits (n = 1267) from 2016 through 2019 among children aged <5 years. We grouped costs into categories relevant to clinical care and administrative billing practices. We examined RSV-associated medical costs by care setting using descriptive and bivariate analyses. We assessed associations between known RSV risk factors and hospitalization costs and length of stay using χ2 tests of association. RESULTS: The median cost was $7100 (IQR $4006-$13 355) per hospitalized child and $503 (IQR $387-$930) per ED visit. Eighty percent (n = 2628) of our final sample were children aged younger than 2 years. Fewer weeks' gestational age was associated with greater median costs in hospitalized children (P < .001, ≥37 weeks of gestational age: $6840 [$3905-$12 450]; 29-36 weeks of gestational age: $7721 [$4362-$15 274]; <29 weeks of gestational age: $9131 [$4518-$19 924]). Infants born full term accounted for 70% of the total expenditures in our sample. Almost three quarters of the health care dollars spent originated in children younger than 12 months of age, the primary age group targeted by recommended RSV prophylactics. CONCLUSIONS: Reducing the cost burden for RSV-associated medical care in young children will require prevention of RSV in all young children, not just high-risk infants. Newly available maternal vaccine and immunoprophylaxis products could substantially reduce RSV-associated medical costs.


Subject(s)
Emergency Service, Hospital , Hospitalization , Respiratory Syncytial Virus Infections , Humans , Respiratory Syncytial Virus Infections/economics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/epidemiology , Emergency Service, Hospital/economics , Emergency Service, Hospital/statistics & numerical data , Infant , Hospitalization/economics , Hospitalization/statistics & numerical data , Child, Preschool , Female , Male , United States/epidemiology , Prospective Studies , Health Care Costs/statistics & numerical data , Infant, Newborn , Hospital Costs/statistics & numerical data , Respiratory Syncytial Virus Vaccines/economics , Emergency Room Visits
10.
Clin Infect Dis ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666501

ABSTRACT

BACKGROUND: Pre-transplant respiratory virus (RV) infections have been associated with negative transplant outcomes in adult hematopoietic cell transplantation (HCT) recipients. In the era of HCT delay due to high-risk RVs, we examined the impact of pre-transplant RV detection on transplant outcomes in a pediatric HCT recipients. METHODS: This retrospective cohort study included myeloablative allogeneic HCT recipients from 2010 to 2019. All patients were screened for RV at least once within 90 days before HCT using RT-PCR, regardless of symptoms. Post-transplant outcomes included days alive and out of hospital (DAOH) and progression to lower respiratory tract infection (LRTI). RESULTS: Among 310 patients, 134 had a RV detected in the 90 days prior to HCT. In univariable analysis, transplant factors including younger age, total body irradiation, umbilical cord blood transplantation, lymphocyte count less than 100/mm3, and HCT comorbidity index score ≥3, and viral factors including symptomatic infection, human rhinovirus (HRV) as a virus type, and symptomatic pre-transplant upper respiratory tract infection (URTI) were associated with fewer DAOH. In multivariable analysis, transplant factors remained significant, but not viral factors. There was a higher incidence of progression to post-transplant LRTI with the same pre-transplant RV if the last positive PCR before HCT was ≤30 days compared to >30 days (p=0.007). CONCLUSION: In the setting of recommending HCT delay for high-risk RVs, symptomatic URTI, including HRV infections, may lead to increased duration of hospitalization and early progression to LRTI when transplantation is performed within 30 days of the last positive PCR test.

11.
JAMA Netw Open ; 7(4): e248255, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38656577

ABSTRACT

Importance: Studies of influenza in children commonly rely on coded diagnoses, yet the ability of International Classification of Diseases, Ninth Revision codes to identify influenza in the emergency department (ED) and hospital is highly variable. The accuracy of newer International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) codes to identify influenza in children is unknown. Objective: To determine the accuracy of ICD-10 influenza discharge diagnosis codes in the pediatric ED and inpatient settings. Design, Setting, and Participants: Children younger than 18 years presenting to the ED or inpatient settings with fever and/or respiratory symptoms at 7 US pediatric medical centers affiliated with the Centers for Disease Control and Prevention-sponsored New Vaccine Surveillance Network from December 1, 2016, to March 31, 2020, were included in this cohort study. Nasal and/or throat swabs were collected for research molecular testing for influenza, regardless of clinical testing. Data, including ICD-10 discharge diagnoses and clinical testing for influenza, were obtained through medical record review. Data analysis was performed in August 2023. Main Outcomes and Measures: The accuracy of ICD-10-coded discharge diagnoses was characterized using molecular clinical or research laboratory test results as reference. Measures included sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Estimates were stratified by setting (ED vs inpatient) and age (0-1, 2-4, and 5-17 years). Results: A total of 16 867 children in the ED (median [IQR] age, 2.0 [0.0-4.0] years; 9304 boys [55.2%]) and 17 060 inpatients (median [IQR] age, 1.0 [0.0-4.0] years; 9798 boys [57.4%]) were included. In the ED, ICD-10 influenza diagnoses were highly specific (98.0%; 95% CI, 97.8%-98.3%), with high PPV (88.6%; 95% CI, 88.0%-89.2%) and high NPV (85.9%; 95% CI, 85.3%-86.6%), but sensitivity was lower (48.6%; 95% CI, 47.6%-49.5%). Among inpatients, specificity was 98.2% (95% CI, 98.0%-98.5%), PPV was 82.8% (95% CI, 82.1%-83.5%), sensitivity was 70.7% (95% CI, 69.8%-71.5%), and NPV was 96.5% (95% CI, 96.2%-96.9%). Accuracy of ICD-10 diagnoses varied by patient age, influenza season definition, time between disease onset and testing, and clinical setting. Conclusions and Relevance: In this large cohort study, influenza ICD-10 discharge diagnoses were highly specific but moderately sensitive in identifying laboratory-confirmed influenza; the accuracy of influenza diagnoses varied by clinical and epidemiological factors. In the ED and inpatient settings, an ICD-10 diagnosis likely represents a true-positive influenza case.


Subject(s)
Influenza, Human , International Classification of Diseases , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Child , Child, Preschool , Male , Female , Infant , Adolescent , United States/epidemiology , Emergency Service, Hospital/statistics & numerical data , Sensitivity and Specificity , Cohort Studies
12.
J Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531685

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDTs) have become widely utilized but longitudinal characterization of their community-based performance remains incompletely understood. METHODS: This prospective longitudinal study at a large public university in Seattle, WA utilized remote enrollment, online surveys, and self-collected nasal swab specimens to evaluate Ag-RDT performance against real-time reverse transcription polymerase chain reaction (rRT-PCR) in the context of SARS-CoV-2 Omicron. Ag-RDT sensitivity and specificity within 1 day of rRT-PCR were evaluated by symptom status throughout the illness episode and Orf1b cycle threshold (Ct). RESULTS: From February to December 2022, 5,757 participants reported 17,572 Ag-RDT results and completed 12,674 rRT-PCR tests, of which 995 (7.9%) were rRT-PCR-positive. Overall sensitivity and specificity were 53.0% (95% CI: 49.6-56.4%) and 98.8% (98.5-99.0%), respectively. Sensitivity was comparatively higher for Ag-RDTs used 1 day after rRT-PCR (69.0%), 4 to 7 days post-symptom onset (70.1%), and Orf1b Ct ≤20 (82.7%). Serial Ag-RDT sensitivity increased with repeat testing ≥2 (68.5%) and ≥4 (75.8%) days after an initial Ag-RDT-negative result. CONCLUSION: Ag-RDT performance varied by clinical characteristics and temporal testing patterns. Our findings support recommendations for serial testing following an initial Ag-RDT-negative result, especially among recently symptomatic persons or those at high-risk for SARS-CoV-2 infection.

13.
Clin Infect Dis ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489670

ABSTRACT

BACKGROUND: The role of serologic testing for SARS-CoV-2 has evolved during the pandemic as seroprevalence in global populations has increased. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the coronavirus disease 2019 (COVID-19) serology literature and construct updated best practice guidance related to SARS-CoV-2 serologic testing. This guideline is an update to the fourth in a series of rapid, frequently updated COVID-19 guidelines developed by IDSA. OBJECTIVE: To develop evidence-based recommendations and identify unmet research needs pertaining to the use of anti-SARS-CoV-2 antibody tests for diagnosis, decisions related to vaccination and administration of monoclonal antibodies or convalescent plasma in immunocompromised patients, and identification of a serologic correlate of immunity. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature reviewed, identified, and prioritized clinical questions related to the use of SARS-CoV-2 serologic tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel recommends against serologic testing to diagnose SARS-CoV-2 infection in the first two weeks after symptom onset (strong recommendations, low certainty of evidence). Serologic testing should not be used to provide evidence of COVID-19 in symptomatic patients with a high clinical suspicion and repeatedly negative nucleic acid amplification test results (strong recommendation, very low certainty of evidence). Serologic testing may assist with the diagnosis of multisystem inflammatory syndrome in children (strong recommendation, very low certainty of evidence). To seek evidence for prior SARS-CoV-2 infection, the panel suggests testing for IgG, IgG/IgM, or total antibodies to nucleocapsid protein three to five weeks after symptom onset (conditional recommendation, low certainty of evidence). In individuals with previous SARS-CoV-2 infection or vaccination, we suggest against routine serologic testing given no demonstrated benefit to improving patient outcomes (conditional recommendation, very low certainty of evidence.) The panel acknowledges further that a negative spike antibody test may be a useful metric to identify immunocompromised patients who are candidates for immune therapy. CONCLUSIONS: The high seroprevalence of antibodies against SARS-CoV-2 worldwide limits the utility of detecting anti-SARS CoV-2 antibody. The certainty of available evidence supporting the use of serology for diagnosis was graded as very low to low. Future studies should use serologic assays calibrated to a common reference standard.

14.
BMC Infect Dis ; 24(1): 309, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481147

ABSTRACT

BACKGROUND: Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine posed challenges to accurately capturing secondary household cases. METHODS: In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021. Symptomatic participants collected respiratory specimens at symptom onset and mailed specimens to the central laboratory in Seattle. Specimens were tested for SARS-CoV-2 using RT-PCR with whole genome sequencing attempted when positive. SARS-CoV-2-infected individuals were notified, and their household contacts submitted specimens every 2 days for 14 days. RESULTS: In total, 1371 participants collected 2029 specimens that were tested; 16 individuals (1.2%) within 6 households tested positive for SARS-CoV-2 during the study period. Full genome sequences were generated from 11 individuals within 4 households. Very little genetic variation was found among SARS-CoV-2 viruses sequenced from different individuals in the same household, supporting transmission within the household. CONCLUSIONS: This study indicates web-based surveillance of respiratory symptoms, combined with rapid and longitudinal specimen collection and remote contact tracing, provides a viable strategy to monitor households and detect household transmission of SARS-CoV-2. TRIAL REGISTRATION IDENTIFIER: NCT04141930, Date of registration 28/10/2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , Quarantine , SARS-CoV-2/genetics , Washington/epidemiology
15.
MMWR Morb Mortal Wkly Rep ; 73(9): 209-214, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38457312

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of hospitalization among infants in the United States. In August 2023, CDC's Advisory Committee on Immunization Practices recommended nirsevimab, a long-acting monoclonal antibody, for infants aged <8 months to protect against RSV-associated lower respiratory tract infection during their first RSV season and for children aged 8-19 months at increased risk for severe RSV disease. In phase 3 clinical trials, nirsevimab efficacy against RSV-associated lower respiratory tract infection with hospitalization was 81% (95% CI = 62%-90%) through 150 days after receipt; post-introduction effectiveness has not been assessed in the United States. In this analysis, the New Vaccine Surveillance Network evaluated nirsevimab effectiveness against RSV-associated hospitalization among infants in their first RSV season during October 1, 2023-February 29, 2024. Among 699 infants hospitalized with acute respiratory illness, 59 (8%) received nirsevimab ≥7 days before symptom onset. Nirsevimab effectiveness was 90% (95% CI = 75%-96%) against RSV-associated hospitalization with a median time from receipt to symptom onset of 45 days (IQR = 19-76 days). The number of infants who received nirsevimab was too low to stratify by duration from receipt; however, nirsevimab effectiveness is expected to decrease with increasing time after receipt because of antibody decay. Although nirsevimab uptake and the interval from receipt of nirsevimab were limited in this analysis, this early estimate supports the current nirsevimab recommendation for the prevention of severe RSV disease in infants. Infants should be protected by maternal RSV vaccination or infant receipt of nirsevimab.


Subject(s)
Antibodies, Monoclonal, Humanized , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Child , Humans , United States/epidemiology , Seasons , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Hospitalization , Respiratory Tract Infections/epidemiology
17.
Blood Adv ; 8(8): 1880-1892, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38386973

ABSTRACT

ABSTRACT: Pediatric hematopoietic cell transplant (HCT) recipients exhibit poor serologic responses to influenza vaccination early after transplant. To facilitate the optimization of influenza vaccination timing, we sought to identify B- and T-cell subpopulations associated with influenza vaccine immunogenicity in this population. We used mass cytometry to phenotype peripheral blood mononuclear cells collected from pediatric HCT recipients enrolled in a multicenter influenza vaccine trial comparing high- and standard-dose formulations over 3 influenza seasons (2016-2019). We fit linear regression models to estimate relationships between immune cell subpopulation numbers before vaccination and prevaccination to postvaccination geometric mean fold rises in antigen-specific (A/H3N2, A/H1N1, and B/Victoria) serum hemagglutination inhibition antibody titers (28-42 days, and ∼6 months after 2 doses). For cell subpopulations identified as predictive of a response to all 3 antigens, we conducted a sensitivity analysis including time after transplant as an additional covariate. Among 156 HCT recipients, we identified 33 distinct immune cell subpopulations; 7 significantly predicted responses to all 3 antigens 28 to 42 days after a 2-dose vaccine series, irrespective of vaccine dose. We also found evidence that baseline absolute numbers of naïve B cells, naïve CD4+ T cells, and circulating T follicular helper cells predicted peak and sustained vaccine-induced titers irrespective of dose or timing of posttransplant vaccine administration. In conclusion, several B- and T-cell subpopulations predicted influenza vaccine immunogenicity in pediatric HCT recipients. This study provides insights into the immune determinants of vaccine responses and may help guide the development of tailored vaccination strategies for this vulnerable population.


Subject(s)
Hematopoietic Stem Cell Transplantation , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Child , Influenza, Human/prevention & control , Transplant Recipients , Immunogenicity, Vaccine , Influenza A Virus, H3N2 Subtype , Leukocytes, Mononuclear
18.
Clin Infect Dis ; 78(5): 1352-1359, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38366649

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory illnesses in children. RSV can be broadly categorized into 2 major subtypes: A and B. RSV subtypes have been known to cocirculate with variability in different regions of the world. Clinical associations with viral subtype have been studied among children with conflicting findings such that no conclusive relationships between RSV subtype and severity have been established. METHODS: During 2016-2020, children aged <5 years were enrolled in prospective surveillance in the emergency department or inpatient settings at 7 US pediatric medical centers. Surveillance data collection included parent/guardian interviews, chart reviews, and collection of midturbinate nasal plus/minus throat swabs for RSV (RSV-A, RSV-B, and untyped) using reverse transcription polymerase chain reaction. RESULTS: Among 6398 RSV-positive children aged <5 years, 3424 (54%) had subtype RSV-A infections, 2602 (41%) had subtype RSV-B infections, and 272 (5%) were not typed, inconclusive, or mixed infections. In both adjusted and unadjusted analyses, RSV-A-positive children were more likely to be hospitalized, as well as when restricted to <1 year. By season, RSV-A and RSV-B cocirculated in varying levels, with 1 subtype dominating proportionally. CONCLUSIONS: Findings indicate that RSV-A and RSV-B may only be marginally clinically distinguishable, but both subtypes are associated with medically attended illness in children aged <5 years. Furthermore, circulation of RSV subtypes varies substantially each year, seasonally and geographically. With introduction of new RSV prevention products, this highlights the importance of continued monitoring of RSV-A and RSV-B subtypes.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Seasons , Humans , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/prevention & control , Infant , Child, Preschool , United States/epidemiology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/isolation & purification , Male , Female , Prospective Studies , Hospitalization/statistics & numerical data , Infant, Newborn , Respiratory Syncytial Virus Vaccines/administration & dosage
19.
JAMA ; 331(5): 408-416, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38319331

ABSTRACT

Importance: Bivalent mRNA COVID-19 vaccines were recommended in the US for children and adolescents aged 12 years or older on September 1, 2022, and for children aged 5 to 11 years on October 12, 2022; however, data demonstrating the effectiveness of bivalent COVID-19 vaccines are limited. Objective: To assess the effectiveness of bivalent COVID-19 vaccines against SARS-CoV-2 infection and symptomatic COVID-19 among children and adolescents. Design, Setting, and Participants: Data for the period September 4, 2022, to January 31, 2023, were combined from 3 prospective US cohort studies (6 sites total) and used to estimate COVID-19 vaccine effectiveness among children and adolescents aged 5 to 17 years. A total of 2959 participants completed periodic surveys (demographics, household characteristics, chronic medical conditions, and COVID-19 symptoms) and submitted weekly self-collected nasal swabs (irrespective of symptoms); participants submitted additional nasal swabs at the onset of any symptoms. Exposure: Vaccination status was captured from the periodic surveys and supplemented with data from state immunization information systems and electronic medical records. Main Outcome and Measures: Respiratory swabs were tested for the presence of the SARS-CoV-2 virus using reverse transcriptase-polymerase chain reaction. SARS-CoV-2 infection was defined as a positive test regardless of symptoms. Symptomatic COVID-19 was defined as a positive test and 2 or more COVID-19 symptoms within 7 days of specimen collection. Cox proportional hazards models were used to estimate hazard ratios for SARS-CoV-2 infection and symptomatic COVID-19 among participants who received a bivalent COVID-19 vaccine dose vs participants who received no vaccine or monovalent vaccine doses only. Models were adjusted for age, sex, race, ethnicity, underlying health conditions, prior SARS-CoV-2 infection status, geographic site, proportion of circulating variants by site, and local virus prevalence. Results: Of the 2959 participants (47.8% were female; median age, 10.6 years [IQR, 8.0-13.2 years]; 64.6% were non-Hispanic White) included in this analysis, 25.4% received a bivalent COVID-19 vaccine dose. During the study period, 426 participants (14.4%) had laboratory-confirmed SARS-CoV-2 infection. Among these 426 participants, 184 (43.2%) had symptomatic COVID-19, 383 (89.9%) were not vaccinated or had received only monovalent COVID-19 vaccine doses (1.38 SARS-CoV-2 infections per 1000 person-days), and 43 (10.1%) had received a bivalent COVID-19 vaccine dose (0.84 SARS-CoV-2 infections per 1000 person-days). Bivalent vaccine effectiveness against SARS-CoV-2 infection was 54.0% (95% CI, 36.6%-69.1%) and vaccine effectiveness against symptomatic COVID-19 was 49.4% (95% CI, 22.2%-70.7%). The median observation time after vaccination was 276 days (IQR, 142-350 days) for participants who received only monovalent COVID-19 vaccine doses vs 50 days (IQR, 27-74 days) for those who received a bivalent COVID-19 vaccine dose. Conclusion and Relevance: The bivalent COVID-19 vaccines protected children and adolescents against SARS-CoV-2 infection and symptomatic COVID-19. These data demonstrate the benefit of COVID-19 vaccine in children and adolescents. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Child , Female , Humans , Male , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Prospective Studies , SARS-CoV-2 , mRNA Vaccines/therapeutic use , Vaccines, Combined/therapeutic use , Child, Preschool , Vaccine Efficacy , United States
20.
Vaccine ; 42(6): 1332-1341, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38307746

ABSTRACT

Vaccine effectiveness (VE) studies utilizing the test-negative design are typically conducted in clinical settings, rather than community populations, leading to bias in VE estimates against mild disease and limited information on VE in healthy young adults. In a community-based university population, we utilized data from a large SARS-CoV-2 testing program to estimate relative VE of COVID-19 mRNA vaccine primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection from September 2021 to July 2022. We used the test-negative design and logistic regression implemented via generalized estimating equations adjusted for age, calendar time, prior SARS-CoV-2 infection, and testing frequency (proxy for test-seeking behavior) to estimate relative VE. Analyses included 2,218 test-positive cases (59 % received monovalent booster dose) and 9,615 test-negative controls (62 %) from 9,066 individuals, with median age of 21 years, mostly students (71 %), White (56 %) or Asian (28 %), and with few comorbidities (3 %). More cases (23 %) than controls (6 %) had COVID-19-like illness. Estimated adjusted relative VE of primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection was 40 % (95 % CI: 33-47 %) during the overall analysis period and 46 % (39-52 %) during the period of Omicron circulation. Relative VE was greater for those without versus those with prior SARS-CoV-2 infection (41 %, 34-48 % versus 33 %, 9 %-52 %, P < 0.001). Relative VE was also greater in the six months after receiving a booster dose (41 %, 33-47 %) compared to more than six months (27 %, 8-42 %), but this difference was not statistically significant (P = 0.06). In this relatively young and healthy adult population, an mRNA monovalent booster dose provided increased protection against symptomatic SARS-CoV-2 infection, overall and with the Omicron variant. University testing programs may be utilized for estimating VE in healthy young adults, a population that is not well-represented by routine VE studies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Young Adult , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Universities , SARS-CoV-2 , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL