Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38829565

ABSTRACT

In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.

2.
Front Plant Sci ; 13: 984522, 2022.
Article in English | MEDLINE | ID: mdl-36438130

ABSTRACT

Siderophore-positive bacteria present in the rhizosphere and in bulk soil assist plants by either inhibiting phytopathogen proliferation or increasing plant growth. The bacterial diversity of the Shisham forest ecosystem in the Tarai region of the Western Himalayas was studied and used for siderophore production, taking into account the large-scale dieback and wilt-induced mortality in Dalbergia sissoo (common name: shisham) plantation forests and the importance of soil microbes in tree health. In addition, Pseudomonas, Burkholderia, and Streptomyces were prominent siderophore-positive bacteria in Shisham forests. Pseudomonas species are known for their remarkable siderophore-producing ability. Bacterial siderophores inhibit pathogen growth by rapidly lowering the number of ferric ions in the rhizosphere. The Pseudomonas monteilii strain MN759447 was isolated from a D. sissoo plantation forest at the Agroforestry Research Centre, Pantnagar, Uttarakhand (28°58'N 79°25'E/28.97°N 79.41°E). It produces a significant number of siderophore units (80.36% in total). A two-stage optimization of growth factors was attempted in the strain MN759447 for better siderophore recovery. In the first-stage single-factor experiment, among the five variables studied, only pH, NH4NO3 concentration, and Fe concentration affected siderophore synthesis. In the second stage, an optimization of pH, NH4NO3 concentration, and Fe concentration for improved growth and enhanced siderophore production was carried out using a Box-Behnken design with response surface methodology. By using LC-MS, two derivatives of pseudomonine, salicylic acid, and kynurenic acid were detected as siderophores in the purified XAD-2 methanol extract of the P. monteilii strain MN759447. In addition to siderophore production, the P. monteilii strain MN759447 also exhibited a broad range of antagonistic activity against Aspergillus calidoustus (65%), Fusarium oxysporum (41.66%), Talaromyces pinophilus (65%), and Talaromyces verruculosus (65.1%) that are linked to sissoo mortality. To our knowledge, this is the first report on siderophore-producing bacteria isolated, identified, and characterized from the D. sissoo Roxb. forest habitat. This strain can also be developed as a commercial product.

3.
Toxins (Basel) ; 14(10)2022 10 06.
Article in English | MEDLINE | ID: mdl-36287956

ABSTRACT

Cereals and cereal-based products are primary sources of nutrition across the world. However, contamination of these foods with aflatoxins (AFs), secondary metabolites produced by several fungal species, has raised serious concerns. AF generation in innate substrates is influenced by several parameters, including the substrate type, fungus species, moisture content, minerals, humidity, temperature, and physical injury to the kernels. Consumption of AF-contaminated cereals and cereal-based products can lead to both acute and chronic health issues related to physical and mental maturity, reproduction, and the nervous system. Therefore, the precise detection methods, detoxification, and management strategies of AFs in cereal and cereal-based products are crucial for food safety as well as consumer health. Hence, this review provides a brief overview of the occurrence, chemical characteristics, biosynthetic processes, health hazards, and detection techniques of AFs, along with a focus on detoxification and management strategies that could be implemented for food safety and security.


Subject(s)
Aflatoxins , Humans , Aflatoxins/analysis , Edible Grain/chemistry , Food Contamination/analysis , Food Safety , Humidity
4.
Biomolecules ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-36139019

ABSTRACT

Olive oil is considered to be a food of utmost importance, especially in the Mediterranean countries. The quality of olive oil must remain stable regarding authenticity and storage. This review paper emphasizes the detection of olive oil oxidation status or rancidity, the analytical techniques that are usually used, as well as the application and significance of chemometrics in the research of olive oil. The first part presents the effect of the oxidation of olive oil during storage. Then, lipid stability measurements are described in parallel with instrumentation and different analytical techniques that are used for this particular purpose. The next part presents some research publications that combine chemometrics and the study of lipid changes due to storage published in 2005-2021. Parameters such as exposure to light, air and various temperatures as well as different packaging materials were investigated to test olive oil stability during storage. The benefits of each chemometric method are provided as well as the overall significance of combining analytical techniques and chemometrics. Furthermore, the last part reflects on fraud in olive oil, and the most popular analytical techniques in the authenticity field are stated to highlight the importance of the authenticity of olive oil.


Subject(s)
Chemometrics , Fraud , Olive Oil , Oxidation-Reduction
5.
Plants (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34579314

ABSTRACT

Nowadays, the extract of seaweeds has drawn attention as a rich source of bioactive metabolites. Seaweeds are known for their biologically active compounds whose antibacterial and antifungal activities have been documented. This research aimed to study the profile of phenolic compounds using the HPLC method and determine biologically active compounds using the GC-MS method and the antifungal activity of Gracilariopsis persica against plant pathogenic fungi. G. persica was collected from its natural habitat in Suru of Bandar Abbas, Iran, dried, and extracted by methanol. The quantitative results on phenolic compounds using the HPLC method showed that the most abundant compounds in G. persica were rosmarinic acid (20.9 ± 0.41 mg/kg DW) and quercetin (11.21 ± 0.20 mg/kg DW), and the least abundant was cinnamic acid (1.4 ± 0.10 mg/kg DW). The GC-MS chromatography revealed 50 peaks in the methanolic extract of G. persica, implying 50 compounds. The most abundant components included cholest-5-en-3-ol (3 beta) (27.64%), palmitic acid (17.11%), heptadecane (7.71%), and palmitic acid methyl ester (6.66%). The antifungal activity of different concentrations of the extract was determined in vitro. The results as to the effect of the alga extract at the rates of 200, 400, 600, 800, and 1000 µL on the mycelial growth of four important plant pathogenic fungi, including Botrytis cinerea, Aspergillus niger, Penicillium expansum, and Pyricularia oryzae, revealed that the mycelial growth of all four fungi was lower at higher concentrations of the alga extract. However, the extract concentration of 1000 µL completely inhibited their mycelial growth. The antifungal activity of this alga may be related to the phenolic compounds, e.g., rosmarinic acid and quercetin, as well as compounds such as palmitic acid, oleic acid, and other components identified using the GC-MS method whose antifungal effects have already been confirmed.

6.
Molecules ; 26(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34361657

ABSTRACT

The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.


Subject(s)
Actinobacteria/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Biological Products , Enzymes/isolation & purification , Enzymes/metabolism , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...