Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
ACS Chem Biol ; 18(12): 2441-2449, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37962075

ABSTRACT

The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.


Subject(s)
Nucleic Acids , RNA , Epigenesis, Genetic , Biology
2.
Int. microbiol ; 25(4): 839-850, Nov. 2022. ilus, graf, tab
Article in English | IBECS | ID: ibc-216250

ABSTRACT

Two dozen field-collected Bacillus and a dozen Bacillus spizizenii wild-type strains from strain collections were selected on the basis of their antagonistic properties against the Gram-positive strain Micrococcus luteus. Based on their genetic and antibiotic profiles, they were characterized (subtilin encoding spaS gene sequences, mass spectrometric, and quantitative-reversed phase liquid chromatographic analyses, as well as the presence of the lanthionine cyclase protein SpaC by western blotting), seven novel producers of the lanthipeptide subtilin. Phylogenetic analyses of the subtilin-producing wild-type strains based on their 16S rRNA sequences showed that all seven strains could be classified as B. spizizenii: The field-collected strains HS and N5, as well as strains DSM 618, 1087, 6395, 6405, and 8439 from the German Collection of Microorganisms and Cell Cultures. To the best of our knowledge, all B. spizizenii strains described so far are characterized by the fact that they can produce a lanthipeptide of the subtilin family. Both the lanthipeptide structures and the organization and sequences of the 16S rRNA-encoding genes suggest a subdivision of B. spizizenii into subspecies: The subtilin-producing B. spizizenii strains are distinctly different from the entianin-producing B. spizizenii typing strain TU-B-10 T (DSM 15029 T).(AU)


Subject(s)
Humans , Bacillus , Anti-Bacterial Agents , Microbiology
3.
Methods Mol Biol ; 2533: 149-166, 2022.
Article in English | MEDLINE | ID: mdl-35796987

ABSTRACT

Cellular RNAs in all three kingdoms of life are modified with diverse chemical modifications. These chemical modifications expand the topological repertoire of RNAs, and fine-tune their functions. Ribosomal RNA in yeast contains more than 100 chemically modified residues in the functionally crucial and evolutionary conserved regions. The chemical modifications in the rRNA are of three types-methylation of the ribose sugars at the C2-positionAbstract (Nm), isomerization of uridines to pseudouridines (Ψ), and base modifications such as (methylation (mN), acetylation (acN), and aminocarboxypropylation (acpN)). The modifications profile of the yeast rRNA has been recently completed, providing an excellent platform to analyze the function of these modifications in RNA metabolism and in cellular physiology. Remarkably, majority of the rRNA modifications and the enzymatic machineries discovered in yeast are highly conserved in eukaryotes including humans. Mutations in factors involved in rRNA modification are linked to several rare severe human diseases (e.g., X-linked Dyskeratosis congenita, the Bowen-Conradi syndrome and the William-Beuren disease). In this chapter, we summarize all rRNA modifications and the corresponding enzymatic machineries of the budding yeast.


Subject(s)
RNA, Ribosomal , Saccharomyces cerevisiae , Acetylation , Humans , Methylation , Pseudouridine/chemistry , Pseudouridine/metabolism , RNA Processing, Post-Transcriptional , RNA, Fungal/chemistry , RNA, Fungal/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
Int Microbiol ; 25(4): 839-850, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35902452

ABSTRACT

Two dozen field-collected Bacillus and a dozen Bacillus spizizenii wild-type strains from strain collections were selected on the basis of their antagonistic properties against the Gram-positive strain Micrococcus luteus. Based on their genetic and antibiotic profiles, they were characterized (subtilin encoding spaS gene sequences, mass spectrometric, and quantitative-reversed phase liquid chromatographic analyses, as well as the presence of the lanthionine cyclase protein SpaC by western blotting), seven novel producers of the lanthipeptide subtilin. Phylogenetic analyses of the subtilin-producing wild-type strains based on their 16S rRNA sequences showed that all seven strains could be classified as B. spizizenii: The field-collected strains HS and N5, as well as strains DSM 618, 1087, 6395, 6405, and 8439 from the German Collection of Microorganisms and Cell Cultures. To the best of our knowledge, all B. spizizenii strains described so far are characterized by the fact that they can produce a lanthipeptide of the subtilin family. Both the lanthipeptide structures and the organization and sequences of the 16S rRNA-encoding genes suggest a subdivision of B. spizizenii into subspecies: The subtilin-producing B. spizizenii strains are distinctly different from the entianin-producing B. spizizenii typing strain TU-B-10 T (DSM 15029 T).


Subject(s)
Anti-Bacterial Agents , Bacillus , Anti-Bacterial Agents/metabolism , Bacillus/genetics , Bacillus subtilis/chemistry , Bacteriocins , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
5.
Nucleic Acids Res ; 48(3): 1435-1450, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31863583

ABSTRACT

tRNAs from all domains of life contain modified nucleotides. However, even for the experimentally most thoroughly characterized model organism Escherichia coli not all tRNA modification enzymes are known. In particular, no enzyme has been found yet for introducing the acp3U modification at position 47 in the variable loop of eight E. coli tRNAs. Here we identify the so far functionally uncharacterized YfiP protein as the SAM-dependent 3-amino-3-carboxypropyl transferase catalyzing this modification and thereby extend the list of known tRNA modification enzymes in E. coli. Similar to the Tsr3 enzymes that introduce acp modifications at U or m1Ψ nucleotides in rRNAs this protein contains a DTW domain suggesting that acp transfer reactions to RNA nucleotides are a general function of DTW domain containing proteins. The introduction of the acp3U-47 modification in E. coli tRNAs is promoted by the presence of the m7G-46 modification as well as by growth in rich medium. However, a deletion of the enzymes responsible for the modifications at position 46 and 47 in the variable loop of E. coli tRNAs did not lead to a clearly discernible phenotype suggesting that these two modifications play only a minor role in ensuring the proper function of tRNAs in E. coli.


Subject(s)
Alkyl and Aryl Transferases/genetics , Bacterial Proteins/genetics , RNA, Transfer/genetics , Alkyl and Aryl Transferases/chemistry , Bacterial Proteins/chemistry , Escherichia coli/enzymology , Escherichia coli/genetics , Nucleic Acid Conformation , Nucleotides , Saccharomyces cerevisiae/enzymology
6.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Article in English | MEDLINE | ID: mdl-31428936

ABSTRACT

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Subject(s)
Brain Neoplasms/metabolism , Epigenesis, Genetic , Glioma/metabolism , Methyltransferases/metabolism , Muscle Proteins/metabolism , Protein Biosynthesis/physiology , Ribosomes/metabolism , Animals , Biomarkers, Tumor , Cell Line, Tumor , DNA Methylation , Humans , Methyltransferases/genetics , Mice, Nude , Muscle Proteins/genetics , Neoplasm Transplantation , RNA, Ribosomal, 28S
7.
Appl Environ Microbiol ; 85(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30952662

ABSTRACT

Lantibiotics subtilin and nisin are produced by Bacillus subtilis and Lactococcus lactis, respectively. To prevent toxicity of their own lantibiotic, both bacteria express specific immunity proteins, called SpaI and NisI. In addition, ABC transporters SpaFEG and NisFEG prevent lantibiotic toxicity by transporting the respective peptides to the extracellular space. Although the three-dimensional structures of SpaI and NisI have been solved, very little is known about the molecular function of either lipoprotein. Using laser-induced liquid bead ion desorption (LILBID)-mass spectrometry, we show here that subtilin interacts with SpaI monomers. The expression of either SpaI or NisI in a subtilin-nonproducing B. subtilis strain resulted in the respective strain being more resistant against either subtilin or nisin. Furthermore, pore formation provided by subtilin and nisin was prevented specifically upon the expression of either SpaI or NisI. As shown with a nisin-subtilin hybrid molecule, the C-terminal part of subtilin but not any particular lanthionine ring was needed for SpaI-mediated immunity. With respect to growth, SpaI provided less immunity against subtilin than is provided by the ABC transporter SpaFEG. However, SpaI prevented pore formation much more efficiently than SpaFEG. Taken together, our data show the physiological function of SpaI as a fast immune response to protect the cellular membrane.IMPORTANCE The two lantibiotics nisin and subtilin are produced by Lactococcus lactis and Bacillus subtilis, respectively. Both peptides have strong antimicrobial activity against Gram-positive bacteria, and therefore, appropriate protection mechanisms are required for the producing strains. To prevent toxicity of their own lantibiotic, both bacteria express immunity proteins, called SpaI and NisI, and in addition, ABC transporters SpaFEG and NisFEG. Whereas it has been shown that the ABC transporters protect the producing strains by transporting the toxic peptides to the extracellular space, the exact mode of action and the physiological function of the lipoproteins during immunity are still unknown. Understanding the exact role of lantibiotic immunity proteins is of major importance for improving production rates and for the design of newly engineered peptide antibiotics. Here, we show (i) the specificity of each lipoprotein for its own lantibiotic, (ii) the specific physical interaction of subtilin with its lipoprotein SpaI, (iii) the physiological function of SpaI in protecting the cellular membrane, and (iv) the importance of the C-terminal part of subtilin for its interaction with SpaI.


Subject(s)
Bacillus subtilis/immunology , Bacillus subtilis/metabolism , Bacteriocins/metabolism , Immunity , Nisin/metabolism , ATP-Binding Cassette Transporters/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Bacteriocins/genetics , Drug Resistance, Bacterial , Gene Expression Regulation, Bacterial , Genes, Bacterial , Lactococcus lactis , Lipoproteins/genetics , Lipoproteins/immunology , Lipoproteins/isolation & purification , Lipoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism
8.
Sci Rep ; 8(1): 11904, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093689

ABSTRACT

The entire chemical modification repertoire of yeast ribosomal RNAs and the enzymes responsible for it have recently been identified. Nonetheless, in most cases the precise roles played by these chemical modifications in ribosome structure, function and regulation remain totally unclear. Previously, we demonstrated that yeast Rrp8 methylates m1A645 of 25S rRNA in yeast. Here, using mung bean nuclease protection assays in combination with quantitative RP-HPLC and primer extension, we report that 25S/28S rRNA of S. pombe, C. albicans and humans also contain a single m1A methylation in the helix 25.1. We characterized nucleomethylin (NML) as a human homolog of yeast Rrp8 and demonstrate that NML catalyzes the m1A1322 methylation of 28S rRNA in humans. Our in vivo structural probing of 25S rRNA, using both DMS and SHAPE, revealed that the loss of the Rrp8-catalyzed m1A modification alters the conformation of domain I of yeast 25S rRNA causing translation initiation defects detectable as halfmers formation, likely because of incompetent loading of 60S on the 43S-preinitiation complex. Quantitative proteomic analysis of the yeast Δrrp8 mutant strain using 2D-DIGE, revealed that loss of m1A645 impacts production of specific set of proteins involved in carbohydrate metabolism, translation and ribosome synthesis. In mouse, NML has been characterized as a metabolic disease-associated gene linked to obesity. Our findings in yeast also point to a role of Rrp8 in primary metabolism. In conclusion, the m1A modification is crucial for maintaining an optimal 60S conformation, which in turn is important for regulating the production of key metabolic enzymes.


Subject(s)
Adenosine/analogs & derivatives , Methyltransferases/metabolism , Nuclear Proteins/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large/metabolism , Adenosine/metabolism , Base Sequence , Electrophoresis, Gel, Two-Dimensional , HCT116 Cells , Humans , Methylation , Methyltransferases/genetics , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nucleic Acid Conformation , Protein Domains , Protein O-Methyltransferase , Proteomics/methods , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA-Binding Proteins , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Ribosome Subunits, Large/chemistry , Ribosome Subunits, Large/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Appl Environ Microbiol ; 83(18)2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28710266

ABSTRACT

Autoinduction via two-component systems is a widespread regulatory mechanism that senses environmental and metabolic changes. Although the lantibiotics nisin and subtilin are closely related and share the same lanthionine ring structure, they autoinduce their biosynthesis in a highly specific manner. Subtilin activates only the two-component system SpaRK of Bacillus subtilis, whereas nisin activates solely the two-component system NisRK of Lactococcus lactis To identify components that determine the specificity of subtilin autoinduction, several variants of the respective lantibiotics were analyzed for their autoinductive capacities. Here, we show that amino acid position 20 is crucial for SpaK activation, as an engineered nisin molecule with phenylalanine at position 20 (nisin N20F) was able to activate SpaK in a specific manner. In combination with the N-terminal tryptophan of subtilin (nisin I1W/N20F), SpaK autoinduction reached almost the level of subtilin-mediated autoinduction. Furthermore, the overall structure of subtilin is also important for its association with the histidine kinase. The destruction of the second lanthionine ring (subtilin C11A, ring B), as well as mutations that interfere with the flexibility of the hinge region located between lanthionine rings C and D (subtilin L21P/Q22P), abolished SpaK autoinduction. Although the C-terminal part of subtilin is needed for efficient SpaK autoinduction, the destruction of lanthionine rings D and E had no measurable impact. Based on these findings, a model for the interaction of subtilin with histidine kinase SpaK was established.IMPORTANCE Although two-component systems are important regulatory systems that sense environmental changes, very little information on the molecular mechanism of sensing or the interaction of the sensor with its respective kinase is available. The strong specificity of linear lantibiotics such as subtilin and nisin for their respective kinases provides an excellent model system to unravel the structural needs of these lantibiotics for activating histidine kinases in a specific manner. More than that, the biosyntheses of lantibiotics are autoinduced via two-component systems. Therefore, an understanding of their interactions with histidine kinases is needed for the biosynthesis of newly engineered peptide antibiotics. Using a Bacillus subtilis-based reporter system, we were able to identify the molecular constraints that are necessary for specific SpaK activation and to provide SpaK specificity to nisin with just two point mutations.

10.
PLoS Genet ; 13(5): e1006804, 2017 May.
Article in English | MEDLINE | ID: mdl-28542199

ABSTRACT

Box C/D snoRNAs are known to guide site-specific ribose methylation of ribosomal RNA. Here, we demonstrate a novel and unexpected role for box C/D snoRNAs in guiding 18S rRNA acetylation in yeast. Our results demonstrate, for the first time, that the acetylation of two cytosine residues in 18S rRNA catalyzed by Kre33 is guided by two orphan box C/D snoRNAs-snR4 and snR45 -not known to be involved in methylation in yeast. We identified Kre33 binding sites on these snoRNAs as well as on the 18S rRNA, and demonstrate that both snR4 and snR45 establish extended bipartite complementarity around the cytosines targeted for acetylation, similar to pseudouridylation pocket formation by the H/ACA snoRNPs. We show that base pairing between these snoRNAs and 18S rRNA requires the putative helicase activity of Kre33, which is also needed to aid early pre-rRNA processing. Compared to yeast, the number of orphan box C/D snoRNAs in higher eukaryotes is much larger and we hypothesize that several of these may be involved in base-modifications.


Subject(s)
RNA Processing, Post-Transcriptional , RNA, Ribosomal, 18S/metabolism , RNA, Small Nuclear/metabolism , Acetylation , Acetyltransferases/chemistry , Acetyltransferases/genetics , Acetyltransferases/metabolism , Binding Sites , Cytosine/metabolism , Protein Binding , RNA, Ribosomal, 18S/genetics , RNA, Small Nuclear/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
PLoS One ; 12(3): e0173940, 2017.
Article in English | MEDLINE | ID: mdl-28278232

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0168873.].

12.
RNA Biol ; 14(9): 1138-1152, 2017 09 02.
Article in English | MEDLINE | ID: mdl-27911188

ABSTRACT

rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.


Subject(s)
Eukaryotic Cells/physiology , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Acetylation , Animals , Disease Susceptibility , Humans , Methylation , RNA, Ribosomal/chemistry , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Ribosomes/chemistry , Structure-Activity Relationship
13.
PLoS One ; 11(12): e0168873, 2016.
Article in English | MEDLINE | ID: mdl-28033325

ABSTRACT

Ribosomes are large ribonucleoprotein complexes that are fundamental for protein synthesis. Ribosomes are ribozymes because their catalytic functions such as peptidyl transferase and peptidyl-tRNA hydrolysis depend on the rRNA. rRNA is a heterogeneous biopolymer comprising of at least 112 chemically modified residues that are believed to expand its topological potential. In the present study, we established a comprehensive modification profile of Saccharomyces cerevisiae's 18S and 25S rRNA using a high resolution Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). A combination of mung bean nuclease assay, rDNA point mutants and snoRNA deletions allowed us to systematically map all ribose and base modifications on both rRNAs to a single nucleotide resolution. We also calculated approximate molar levels for each modification using their UV (254nm) molar response factors, showing sub-stoichiometric amount of modifications at certain residues. The chemical nature, their precise location and identification of partial modification will facilitate understanding the precise role of these chemical modifications, and provide further evidence for ribosome heterogeneity in eukaryotes.


Subject(s)
Plant Proteins/metabolism , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribose/metabolism , Saccharomyces cerevisiae/genetics , Single-Strand Specific DNA and RNA Endonucleases/metabolism , Base Sequence , Chromatography, Reverse-Phase , Methylation , Point Mutation , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Ribosomes/genetics , Ribosomes/metabolism
15.
Nucleic Acids Res ; 44(9): 4304-16, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27084949

ABSTRACT

The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.


Subject(s)
Alkyl and Aryl Transferases/physiology , RNA, Ribosomal, 18S/biosynthesis , Saccharomyces cerevisiae/enzymology , Alkyl and Aryl Transferases/chemistry , Catalytic Domain , Crystallography, X-Ray , HCT116 Cells , Humans , Hydrogen Bonding , Inverted Repeat Sequences , Models, Molecular , Protein Binding , RNA Processing, Post-Transcriptional , RNA, Ribosomal, 18S/chemistry , S-Adenosylmethionine/chemistry
16.
J Biol Chem ; 290(48): 28869-86, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26459561

ABSTRACT

Many Gram-positive bacteria produce lantibiotics, genetically encoded and posttranslationally modified peptide antibiotics, which inhibit the growth of other Gram-positive bacteria. To protect themselves against their own lantibiotics these bacteria express a variety of immunity proteins including the LanI lipoproteins. The structural and mechanistic basis for LanI-mediated lantibiotic immunity is not yet understood. Lactococcus lactis produces the lantibiotic nisin, which is widely used as a food preservative. Its LanI protein NisI provides immunity against nisin but not against structurally very similar lantibiotics from other species such as subtilin from Bacillus subtilis. To understand the structural basis for LanI-mediated immunity and their specificity we investigated the structure of NisI. We found that NisI is a two-domain protein. Surprisingly, each of the two NisI domains has the same structure as the LanI protein from B. subtilis, SpaI, despite the lack of significant sequence homology. The two NisI domains and SpaI differ strongly in their surface properties and function. Additionally, SpaI-mediated lantibiotic immunity depends on the presence of a basic unstructured N-terminal region that tethers SpaI to the membrane. Such a region is absent from NisI. Instead, the N-terminal domain of NisI interacts with membranes but not with nisin. In contrast, the C-terminal domain specifically binds nisin and modulates the membrane affinity of the N-terminal domain. Thus, our results reveal an unexpected structural relationship between NisI and SpaI and shed light on the structural basis for LanI mediated lantibiotic immunity.


Subject(s)
Bacterial Proteins/chemistry , Bacteriocins/chemistry , Lactococcus lactis/chemistry , Lipoproteins/chemistry , Membrane Proteins/chemistry , Nisin/chemistry , Bacillus subtilis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nisin/genetics , Nisin/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
17.
Nucleic Acids Res ; 43(20): 9950-64, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26365242

ABSTRACT

The combination of Reverse Transcription (RT) and high-throughput sequencing has emerged as a powerful combination to detect modified nucleotides in RNA via analysis of either abortive RT-products or of the incorporation of mismatched dNTPs into cDNA. Here we simultaneously analyze both parameters in detail with respect to the occurrence of N-1-methyladenosine (m(1)A) in the template RNA. This naturally occurring modification is associated with structural effects, but it is also known as a mediator of antibiotic resistance in ribosomal RNA. In structural probing experiments with dimethylsulfate, m(1)A is routinely detected by RT-arrest. A specifically developed RNA-Seq protocol was tailored to the simultaneous analysis of RT-arrest and misincorporation patterns. By application to a variety of native and synthetic RNA preparations, we found a characteristic signature of m(1)A, which, in addition to an arrest rate, features misincorporation as a significant component. Detailed analysis suggests that the signature depends on RNA structure and on the nature of the nucleotide 3' of m(1)A in the template RNA, meaning it is sequence dependent. The RT-signature of m(1)A was used for inspection and confirmation of suspected modification sites and resulted in the identification of hitherto unknown m(1)A residues in trypanosomal tRNA.


Subject(s)
Adenosine/analogs & derivatives , High-Throughput Nucleotide Sequencing , RNA/chemistry , Reverse Transcription , Sequence Analysis, RNA , Adenosine/analysis , Animals , Humans , Machine Learning , Mice , Sequence Homology, Nucleic Acid
18.
Appl Environ Microbiol ; 81(22): 7914-23, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26341212

ABSTRACT

The biosynthesis of the lantibiotics subtilin and nisin is regulated by autoinduction via two-component systems. Although subtilin is structurally closely related to nisin and contains the same lanthionine ring structure, both lantibiotics specifically autoinduce their biosynthesis. Subtilin and also the subtilin-like lantibiotics entianin and ericin autoinduce the two-component system SpaRK of Bacillus subtilis, whereas the biosynthesis of nisin is autoinduced via the two-component system NisRK of Lactococcus lactis. Autoinduction is highly specific for the respective lantibiotic and therefore of major importance for the functional expression of genetically engineered subtilin-like lantibiotics. To identify the structural features required for subtilin autoinduction, subtilin-nisin hybrids and specific point mutations of amino acid position 1 were generated. For subtilin autoinduction, the N-terminal tryptophan is the most important for full SpaK activation. The failure of subtilin to autoinduce the histidine kinase NisK mainly depends on the N-terminal tryptophan, as its single exchange to the aliphatic amino acid residues isoleucine, leucine, and valine provided NisK autoinduction. In addition, the production of subtilin variants which did not autoinduce their own biosynthesis could be rescued upon heterologous coexpression in B. subtilis DSM15029 by the autoinducing subtilin-like lantibiotic entianin.


Subject(s)
Bacillus subtilis/genetics , Bacteriocins/genetics , Gene Expression Regulation, Bacterial , Nisin/genetics , Bacillus subtilis/metabolism , Bacteriocins/metabolism , Nisin/metabolism , Sequence Analysis, DNA
19.
Appl Environ Microbiol ; 81(16): 5335-43, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26025904

ABSTRACT

The biosynthesis of the lantibiotic subtilin is autoinduced in a quorum-sensing mechanism via histidine kinase SpaK. Subtilin-like lantibiotics, such as entianin, ericin S, and subtilin, specifically activated SpaK in a comparable manner, whereas the structurally similar nisin did not provide the signal for SpaK activation at nontoxic concentrations. Surprisingly, nevertheless, nisin if applied together with entianin partly quenched SpaK activation. The N-terminal entianin1-20 fragment (comprising N-terminal amino acids 1 to 20) was sufficient for SpaK activation, although higher concentrations were needed. The N-terminal nisin1-20 fragment also interfered with entianin-mediated activation of SpaK and, remarkably, at extremely high concentrations also activated SpaK. Our data show that the N-terminal entianin1-20 fragment is sufficient for SpaK activation. However, if present, the C-terminal part of the molecule further strongly enhances the activation, possibly by its interference with the cellular membrane. As shown by using lipid II-interfering substances and a lipid II-deficient mutant strain, lipid II is not needed for the sensing mechanism.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Bacteriocins/metabolism , Protein Kinases/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Enzyme Activation , Histidine Kinase , Nisin/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
20.
Nucleic Acids Res ; 43(4): 2342-52, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25653162

ABSTRACT

Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications.


Subject(s)
RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/metabolism , Saccharomyces cerevisiae/genetics , Gene Deletion , Methylation , Plant Proteins , Plasmids/metabolism , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Ribose/metabolism , Saccharomyces cerevisiae/metabolism , Single-Strand Specific DNA and RNA Endonucleases
SELECTION OF CITATIONS
SEARCH DETAIL
...