ABSTRACT
Pathogens transmitted by mosquitoes (Diptera, Culicidae) in sylvatic or urban cycles involve wild or domestic animals and humans, driven by various mosquito species with distinct host preferences. Understanding mosquito-host associations is crucial for ecological insights and pathogen surveillance. In this study, we analyzed mosquito blood meals from coastal French Guiana by amplifying and sequencing host DNA from blood-fed females. Using the 12S ribosomal RNA gene and Sanger sequencing, we identified blood meals from 26 mosquito species across six genera, with 59% belonging to the Culex genus. Nanopore sequencing of selected samples showed 12 mosquito species with one to three mixed blood-meal sources. Mammals were the primary hosts (88%), followed by birds (7%), squamates (3%), and amphibians (2%), indicating a strong preference for mammalian hosts. A total of 46 vertebrate host species were identified, demonstrating high host diversity. This research provides insights into mosquito host usage and highlights the complexities of monitoring arboviruses of public health concern.
ABSTRACT
French Guiana (FG), a French overseas territory in South America, is susceptible to tropical diseases, including arboviruses. The tropical climate supports the proliferation and establishment of vectors, making it difficult to control transmission. In the last ten years, FG has experienced large outbreaks of imported arboviruses such as Chikungunya and Zika, as well as endemic arboviruses such as dengue, Yellow fever, and Oropouche virus. Epidemiological surveillance is challenging due to the differing distributions and behaviors of vectors. This article aims to summarize the current knowledge of these arboviruses in FG and discuss the challenges of arbovirus emergence and reemergence. Effective control measures are hampered by the nonspecific clinical presentation of these diseases, as well as the Aedes aegypti mosquito's resistance to insecticides. Despite the high seroprevalence of certain viruses, the possibility of new epidemics cannot be ruled out. Therefore, active epidemiological surveillance is needed to identify potential outbreaks, and an adequate sentinel surveillance system and broad virological diagnostic panel are being developed in FG to improve disease management.
Subject(s)
Aedes , Arbovirus Infections , Arboviruses , Chikungunya Fever , Dengue , Zika Virus Infection , Zika Virus , Animals , Humans , Arbovirus Infections/diagnosis , Arbovirus Infections/epidemiology , French Guiana/epidemiology , Seroepidemiologic Studies , Chikungunya Fever/epidemiology , Zika Virus Infection/epidemiology , South America/epidemiology , Dengue/diagnosis , Dengue/epidemiologyABSTRACT
Anopheles darlingi is the main vector of malaria in South America. In French Guiana, malaria transmission occurs inland and along the rivers with a regular reemergence in the lower Oyapock area. Control against malaria vectors includes indoor residual spraying of deltamethrin and the distribution of long-lasting impregnated bednets. In this context, the level of resistance to pyrethroids was monitored for 4 years using CDC bottle tests in An. darlingi populations. A loss of susceptibility to pyrethroids was recorded with 30-minute knock-down measured as low as 81%. However, no pyrethroid molecular resistance was found by sequencing a 170 base pair fragment of the S6 segment of domain II of the voltage-gated sodium channel gene. Fluctuation of resistance phenotypes may be influenced by the reintroduction of susceptible alleles from sylvatic populations or by other mechanisms of metabolic resistance.
Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Anopheles/genetics , French Guiana , Insecticide Resistance/genetics , Mosquito Vectors/genetics , Malaria/prevention & control , Pyrethrins/pharmacology , Insecticides/pharmacology , Mosquito ControlABSTRACT
PURPOSE OF REVIEW: Although the chikungunya virus was discovered more than 60 years ago, it has only really been studied since the outbreak in La Reunion in 2005-2006. Ten years later, between 2014 and 2015, the chikungunya virus spread throughout the Americas, affecting millions of people. The objective of this review is to describe the contributions of research on chikungunya virus infection gained from epidemic in the West Indies and the Guiana Shield. RECENT FINDINGS: Prevalence data were similar to those found in the Indian Ocean or Asia during epidemics. Clinically, there is now a better understanding of the typical, atypical, and severe forms. Several studies have insisted on the presence of neurological forms of chikungunya infection, such as encephalitis or Guillain-Barré syndrome. Cases of septic shock due to chikungunya virus as well as thrombotic thrombocytopenic purpura were described for the first time. Given the magnitude of the epidemic and the large number of people affected, this has led to a better description and new classifications of chikungunya virus infections in specific populations such as pregnant women, the elderly, and children. Several studies also described the behavior of populations faced with an emerging disease. SUMMARY: Current epidemiological data from tropical regions highlights the risk of spreading emerging diseases at higher latitudes, especially concerning arboviruses, since the vector Aedes albopictus is already established in many parts of northern countries. A better understanding of the disease and its epidemic dynamics will foster better management, the crucial importance of which was demonstrated during the COVID-19 epidemic.
ABSTRACT
French Guiana is a European ultraperipheric region located on the northern Atlantic coast of South America. It constitutes an important forested region for biological conservation in the Neotropics. Although very sparsely populated, with its inhabitants mainly concentrated on the Atlantic coastal strip and along the two main rivers, it is marked by the presence and development of old and new epidemic disease outbreaks, both research and health priorities. In this review paper, we synthetize 15 years of multidisciplinary and integrative research at the interface between wildlife, ecosystem modification, human activities and sociodemographic development, and human health. This study reveals a complex epidemiological landscape marked by important transitional changes, facilitated by increased interconnections between wildlife, land-use change and human occupation and activity, human and trade transportation, demography with substantial immigration, and identified vector and parasite pharmacological resistance. Among other French Guianese characteristics, we demonstrate herein the existence of more complex multi-host disease life cycles than previously described for several disease systems in Central and South America, which clearly indicates that today the greater promiscuity between wildlife and humans due to demographic and economic pressures may offer novel settings for microbes and their hosts to circulate and spread. French Guiana is a microcosm that crystallizes all the current global environmental, demographic and socioeconomic change conditions, which may favor the development of ancient and future infectious diseases.
Subject(s)
Animals, Wild , Demography , Ecosystem , Vector Borne Diseases , Zoonoses , Animals , French Guiana/epidemiology , Human Activities , Humans , Incidence , Interdisciplinary Research , Prevalence , Vector Borne Diseases/epidemiology , Vector Borne Diseases/transmission , Zoonoses/epidemiology , Zoonoses/etiology , Zoonoses/transmissionABSTRACT
BACKGROUND: Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES: Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS: In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS: Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION: The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.
Subject(s)
Aedes/drug effects , Insect Vectors/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Aedes/genetics , Aedes/virology , Animals , French Guiana , Insect Vectors/drug effects , Mosquito Control/methods , Mosquito Vectors/virology , Spatio-Temporal AnalysisABSTRACT
Insecticide resistance is a worldwide threat for vector control around the world, and Aedes aegypti, the main vector of several arboviruses, is a particular concern. To better understand the mechanisms of resistance, four isofemale strains originally from French Guiana were isolated and analysed using combined approaches. The activity of detoxification enzymes involved in insecticide resistance was assayed, and mutations located at positions 1016 and 1534 of the sodium voltage-gated channel gene, which have been associated with pyrethroid resistance in Aedes aegypti populations in Latin America, were monitored. Resistance to other insecticide families (organophosphates and carbamates) was evaluated. A large-scale proteomic analysis was performed to identify proteins involved in insecticide resistance. Our results revealed a metabolic resistance and resistance associated with a mutation of the sodium voltage-gated channel gene at position 1016. Metabolic resistance was mediated through an increase of esterase activity in most strains but also through the shifts in the abundance of several cytochrome P450 (CYP450s). Overall, resistance to deltamethrin was linked in the isofemale strains to resistance to other class of insecticides, suggesting that cross- and multiple resistance occur through selection of mechanisms of metabolic resistance. These results give some insights into resistance to deltamethrin and into multiple resistance phenomena in populations of Ae. aegypti.
Subject(s)
Aedes/metabolism , Cytochrome P-450 Enzyme System/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Voltage-Gated Sodium Channels/genetics , Aedes/drug effects , Aedes/genetics , Animals , Esterases/metabolism , Female , French Guiana , Gene Knockdown Techniques , Genotype , Inactivation, Metabolic/genetics , Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Insecticides/pharmacology , Intestinal Mucosa/metabolism , Nitriles/pharmacology , Oligonucleotides/metabolism , Polymorphism, Single Nucleotide , Proteome/analysis , Proteomics , Pyrethrins/pharmacology , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolismABSTRACT
BACKGROUND: In 2017, inhabitants along the border between French Guiana and Brazil were affected by a malaria outbreak primarily due to Plasmodium vivax (Pv). While malaria cases have steadily declined between 2005 and 2016 in this Amazonian region, a resurgence was observed in 2017. METHODS: Two investigations were performed according to different spatial scales and information details: (1) a local study on the French Guiana border, which enabled a thorough investigation of malaria cases treated at a local village health center and the entomological circumstances in the most affected neighborhood, and (2) a regional and cross-border study, which enabled exploration of the regional spatiotemporal epidemic dynamic. Number and location of malaria cases were estimated using French and Brazilian surveillance systems. RESULTS: On the French Guianese side of the border in Saint-Georges de l'Oyapock, the attack rate was 5.5% (n = 4000), reaching 51.4% (n = 175) in one Indigenous neighborhood. Entomological findings suggest a peak of Anopheles darlingi density in August and September. Two female An. darlingi (n = 1104, 0.18%) were found to be Pv-positive during this peak. During the same period, aggregated data from passive surveillance conducted by Brazilian and French Guianese border health centers identified 1566 cases of Pv infection. Temporal distribution during the 2007-2018 period displayed seasonal patterns with a peak in November 2017. Four clusters were identified among epidemic profiles of cross-border area localities. All localities of the first two clusters were Brazilian. The localization of the first cluster suggests an onset of the outbreak in an Indigenous reservation, subsequently expanding to French Indigenous neighborhoods and non-Native communities. CONCLUSIONS: The current findings demonstrate a potential increase in malaria cases in an area with otherwise declining numbers. This is a transborder region where human mobility and remote populations challenge malaria control programs. This investigation illustrates the importance of international border surveillance and collaboration for malaria control, particularly in Indigenous villages and mobile populations.
Subject(s)
Anopheles , Malaria/epidemiology , Adolescent , Animals , Brazil/epidemiology , Disease Outbreaks , Female , French Guiana/epidemiology , Humans , Incidence , Malaria, Vivax/epidemiology , Male , Mosquito Vectors , Plasmodium vivax , Residence Characteristics , Seasons , Spatio-Temporal Analysis , Young AdultABSTRACT
BACKGROUND Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.
Subject(s)
Animals , Pyrethrins/pharmacology , Insecticide Resistance/drug effects , Insecticide Resistance/genetics , Aedes/drug effects , Mosquito Vectors/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Aedes/genetics , Spatio-Temporal Analysis , Mosquito Vectors/virology , French Guiana , Insect Vectors/drug effects , Insect Vectors/geneticsABSTRACT
Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.
Subject(s)
Culicidae , Insecticides , Mosquito Control/methods , Mosquito Vectors , Animals , Chikungunya Fever/transmission , Culicidae/classification , Dengue/transmission , French Guiana , Health Education , Humans , Malaria/transmission , Mosquito Vectors/classification , Yellow Fever/transmission , Zika Virus Infection/transmissionABSTRACT
Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.