Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37509297

ABSTRACT

Penile squamous cell carcinoma (PSCC) is a rare malignancy in most parts of the world and the underlying mechanisms of this disease have not been fully investigated. About 30-50% of cases are associated with high-risk human papillomavirus (HPV) infection, which may have prognostic value. When PSCC becomes resistant to upfront therapies there are limited options, thus further research is needed in this venue. The extracellular domain-facing protein profile on the cell surface (i.e., the surfaceome) is a key area for biomarker and drug target discovery. This research employs computational methods combined with cell line translatomic (n = 5) and RNA-seq transcriptomic data from patient-derived tumors (n = 18) to characterize the PSCC surfaceome, evaluate the composition dependency on HPV infection, and explore the prognostic impact of identified surfaceome candidates. Immunohistochemistry (IHC) was used to validate the localization of select surfaceome markers. This analysis characterized a diverse surfaceome within patient tumors with 25% and 18% of the surfaceome represented by the functional classes of receptors and transporters, respectively. Significant differences in protein classes were noted by HPV status, with the most change being seen in transporter proteins (25%). IHC confirmed the robust surface expression of select surfaceome targets in the top 85% of expression and a superfamily immunoglobulin protein called BSG/CD147 was prognostic of survival. This study provides the first description of the PSCC surfaceome and its relation to HPV infection and sets a foundation for novel biomarker and drug target discovery in this rare cancer.

2.
Sci Transl Med ; 13(609): eabb3738, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34516823

ABSTRACT

The clinical efficacy of epidermal growth factor receptor (EGFR)­targeted therapy in EGFR-mutant non­small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor (MET) proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent EGFR mutation and MET amplification are historically thought to be codependent on the activation of both oncogenes. Hence, patients whose tumors harbor both alterations are commonly treated with a combination of EGFR and MET tyrosine kinase inhibitors (TKIs). Here, we identify and characterize six patient-derived models of EGFR-mutant, MET-amplified lung cancer that have switched oncogene dependence to rely exclusively on MET activation for survival. We demonstrate in this MET-driven subset of EGFR TKI-refractory cancers that canonical EGFR downstream signaling was governed by MET, even in the presence of sustained mutant EGFR expression and activation. In these models, combined EGFR and MET inhibition did not result in greater efficacy in vitro or in vivo compared to single-agent MET inhibition. We further identified a reduced EGFR:MET mRNA expression stoichiometry as associated with MET oncogene dependence and single-agent MET TKI sensitivity. Tumors from 10 of 11 EGFR inhibitor­resistant EGFR-mutant, MET-amplified patients also exhibited a reduced EGFR:MET mRNA ratio. Our findings reveal that a subset of EGFR-mutant, MET-amplified lung cancers develop dependence on MET activation alone, suggesting that such patients could be treated with a single-agent MET TKI rather than the current standard-of-care EGFR and MET inhibitor combination regimens.


Subject(s)
ErbB Receptors , Lung Neoplasms , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Cancer Res ; 77(10): 2712-2721, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28363995

ABSTRACT

Insertion mutations in EGFR and HER2 both occur at analogous positions in exon 20. Non-small cell lung cancer (NSCLC) patients with tumors harboring these mutations seldom achieve clinical responses to dacomitinib and afatinib, two covalent quinazoline-based inhibitors of EGFR or HER2, respectively. In this study, we investigated the effects of specific EGFR and HER2 exon 20 insertion mutations from NSCLC patients that had clinically achieved a partial response after dacomitinib treatment. We identified Gly770 as a common feature among the drug-sensitive mutations. Structural modeling suggested that this mutation may facilitate inhibitor binding to EGFR. Introduction of Gly770 into two dacomitinib-resistant EGFR exon 20 insertion mutants restored sensitivity to dacomitinib. Based on these findings, we used afatinib to treat an NSCLC patient whose tumor harbored the HER2 V777_G778insGSP mutation and achieved a durable partial response. We further identified secondary mutations in EGFR (T790M or C797S) and HER2 (C805S) that mediated acquired drug resistance in drug-sensitive EGFR or HER2 exon 20 insertion models. Overall, our findings identified a subset of EGFR and HER2 exon 20 insertion mutations that are sensitive to existing covalent quinazoline-based EGFR/HER2 inhibitors, with implications for current clinical treatment and next-generation small-molecule inhibitors. Cancer Res; 77(10); 2712-21. ©2017 AACR.


Subject(s)
ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Exons , Mutagenesis, Insertional , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Adult , Amino Acid Substitution , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Codon , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , ErbB Receptors/chemistry , Female , Gene Expression , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Mice , Middle Aged , Models, Molecular , Molecular Conformation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/chemistry , Tomography, X-Ray Computed , Treatment Outcome , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 23(1): 204-213, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27370605

ABSTRACT

PURPOSE: Efforts to discover drugs that overcome resistance to targeted therapies in patients with rare oncogenic alterations, such as NTRK1 and ROS1 rearrangements, are complicated by the cost and protracted timeline of drug discovery. EXPERIMENTAL DESIGN: In an effort to identify inhibitors of NTRK1 and ROS1, which are aberrantly activated in some patients with non-small cell lung cancer (NSCLC), we created and screened a library of existing targeted drugs against Ba/F3 cells transformed with these oncogenes. RESULTS: This screen identified the FDA-approved drug cabozantinib as a potent inhibitor of CD74-ROS1-transformed Ba/F3, including the crizotinib-resistant mutants G2032R and L2026M (IC50 = 9, 26, and 11 nmol/L, respectively). Cabozantinib inhibited CD74-ROS1-transformed Ba/F3 cells more potently than brigatinib (wild-type/G2032R/L2026M IC50 = 30/170/200 nmol/L, respectively), entrectinib (IC50 = 6/2,200/3,500 nmol/L), and PF-06463922 (IC50 = 1/270/2 nmol/L). Cabozantinib inhibited ROS1 autophosphorylation and downstream ERK activation in transformed Ba/F3 cells and in patient-derived tumor cell lines. The IGF-1R inhibitor BMS-536924 potently inhibited CD74-NTRK1-transformed compared with parental Ba/F3 cells (IC50 = 19 nmol/L vs. > 470 nmol/L). A patient with metastatic ROS1-rearranged NSCLC with progression on crizotinib was treated with cabozantinib and experienced a partial response. CONCLUSIONS: While acquired resistance to targeted therapies is challenging, this study highlights that existing agents may be repurposed to overcome drug resistance and identifies cabozantinib as a promising treatment of ROS1-rearranged NSCLC after progression on crizotinib. Clin Cancer Res; 23(1); 204-13. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Gene Rearrangement , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/genetics , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Mutation , Phosphorylation , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/chemistry , Receptor Protein-Tyrosine Kinases/chemistry , Receptor, trkA/chemistry , Signal Transduction/drug effects , Small Molecule Libraries , Structure-Activity Relationship , Tomography, X-Ray Computed , Treatment Outcome
5.
Nature ; 534(7605): 129-32, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251290

ABSTRACT

The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Benzeneacetamides/pharmacology , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Mutant Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cetuximab/pharmacology , Disease Models, Animal , Drug Resistance, Multiple/drug effects , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/drug effects , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation/drug effects , Protein Multimerization/drug effects
6.
Cancer Discov ; 5(9): 960-971, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26036643

ABSTRACT

UNLABELLED: Irreversible pyrimidine-based EGFR inhibitors, including WZ4002, selectively inhibit both EGFR-activating and EGFR inhibitor-resistant T790M mutations more potently than wild-type EGFR. Although this class of mutant-selective EGFR inhibitors is effective clinically in lung cancer patients harboring EGFR(T790M), prior preclinical studies demonstrate that acquired resistance can occur through genomic alterations that activate ERK1/2 signaling. Here, we find that ERK1/2 reactivation occurs rapidly following WZ4002 treatment. Concomitant inhibition of ERK1/2 by the MEK inhibitor trametinib prevents ERK1/2 reactivation, enhances WZ4002-induced apoptosis, and inhibits the emergence of resistance in WZ4002-sensitive models known to acquire resistance via both T790M-dependent and T790M-independent mechanisms. Resistance to WZ4002 in combination with trametinib eventually emerges due to AKT/mTOR reactivation. These data suggest that initial cotargeting of EGFR and MEK could significantly impede the development of acquired resistance in EGFR-mutant lung cancer. SIGNIFICANCE: Patients with EGFR-mutant lung cancer develop acquired resistance to EGFR and mutant-selective EGFR tyrosine kinase inhibitors. Here, we show that cotargeting EGFR and MEK can prevent the emergence of a broad variety of drug resistance mechanisms in vitro and in vivo and may be a superior therapeutic regimen for these patients.


Subject(s)
Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/therapeutic use , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
7.
Cancer Res ; 75(15): 3139-46, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26048680

ABSTRACT

The discovery of oncogenic driver mutations and the subsequent developments in targeted therapies have led to improved outcomes for subsets of lung cancer patients. The identification of additional oncogenic and drug-sensitive alterations may similarly lead to new therapeutic approaches for lung cancer. We identify and characterize novel FGFR2 extracellular domain insertion mutations and demonstrate that they are both oncogenic and sensitive to inhibition by FGFR kinase inhibitors. We demonstrate that the mechanism of FGFR2 activation and subsequent transformation is mediated by ligand-independent dimerization and activation of FGFR2 kinase activity. Both FGFR2-mutant forms are predominantly located in the endoplasmic reticulum and Golgi but nevertheless can activate downstream signaling pathways through their interactions with fibroblast growth factor receptor substrate 2 (FRS2). Our findings provide a rationale for therapeutically targeting this unique subset of FGFR2-mutant cancers as well as insight into their oncogenic mechanisms.


Subject(s)
Mutation , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adult , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Endoplasmic Reticulum/metabolism , Glycosylation , Golgi Apparatus/metabolism , Humans , Lung Neoplasms/genetics , Male , Mice , Mice, Nude , NIH 3T3 Cells , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Protein Structure, Tertiary , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
8.
Nat Med ; 21(6): 560-2, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25939061

ABSTRACT

Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.


Subject(s)
Acrylamides/administration & dosage , Aniline Compounds/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Adult , Aged , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation
9.
Clin Cancer Res ; 21(17): 3913-23, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25948633

ABSTRACT

PURPOSE: Mutant selective irreversible pyrimidine-based EGFR kinase inhibitors, including WZ4002, CO-1686, and AZD9291, are effective in preclinical models and in lung cancer patients harboring the EGFR T790M gefitinib/erlotinib resistance mutation. However, little is known about how cancers develop acquired resistance to this class of EGFR inhibitors. We sought to identify and study EGFR mutations that confer resistance to this class of agents. EXPERIMENTAL DESIGN: We performed an N-ethyl-N-nitrosourea (ENU) mutagenesis screen in EGFR-mutant (sensitizing alone or with concurrent EGFR T790M) Ba/F3 cells and selected drug-resistant clones. We evaluated the sensitivity of EGFR inhibitors in models harboring drug-resistant EGFR mutations. RESULTS: We identified 3 major drug resistance mutations. EGFR L718Q, L844V, and C797S cause resistance to both WZ4002 and CO-1686 while, in contrast, only EGFR C797S leads to AZD9291 resistance. Cells containing an EGFR-sensitizing mutation, Del 19 or L858R, in conjunction with L718Q, L844V, or C797S retain sensitivity to quinazoline-based EGFR inhibitors, gefitinib and afatinib. The C797S mutation, in the presence of Del 19 or L858R and T790M, causes resistance to all current EGFR inhibitors, but L858R/T790M/C797S remains partially sensitive to cetuximab which leads to disruption of EGFR dimerization. CONCLUSIONS: Our findings provide insights into resistance mechanisms to irreversible pyrimidine-based EGFR inhibitors and identify specific genomic contexts in which sensitivity is retained to existing clinical EGFR inhibitors. These findings will guide the development of new strategies to inhibit EGFR.


Subject(s)
Acrylamides/pharmacology , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Acrylamides/chemistry , Afatinib , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Codon , ErbB Receptors/chemistry , Humans , Inhibitory Concentration 50 , Mice , Models, Molecular , Molecular Conformation , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Quinazolines/administration & dosage , Quinazolines/pharmacology
10.
Cell ; 160(5): 977-989, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25723171

ABSTRACT

There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient's living cancer cell with the drug(s) in question. To satisfy this unmet need, we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion ("priming") induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo.


Subject(s)
Cell Death , Neoplasms/drug therapy , Signal Transduction , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Female , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mitochondria/metabolism , Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Precision Medicine
11.
Mol Oncol ; 9(1): 260-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25226813

ABSTRACT

MET targeted therapies are under clinical evaluation for non-small-cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKI) against MET have varying degrees of specificity. Tivantinib (ARQ 197) is reported to be a non-ATP competitive selective MET inhibitor. We aimed to compare the activity of tivantinib to established MET TKIs in a panel of NSCLC cell lines characterized by their MET dependency and by different relevant genotypes. A549, H3122, PC9 and HCC827, their respective resistant clones PC9 GR4 and HCC827 GR6 and the MET amplified cell lines H1993 and EBC-1 were treated in vitro with tivantinib, crizotinib or PHA-665752. Crizotinib and PHA-665752 showed growth inhibition restricted to MET dependent cell lines. The pattern of activity was related to MET inhibition and downstream signaling inhibition of AKT and ERK1/2, resulting in G0/G1 cycle arrest and apoptosis. In contrast, tivantinib possessed more potent anti-proliferative activity that was not restricted to only MET dependent cell lines. Tivantinib did not inhibit cellular MET activity or phosphorylation of downstream signaling proteins AKT or ERK1/2 in either MET dependent or independent cell lines. Cell cycle analysis demonstrated that tivantinib induced a G2/M arrest and induced apoptosis. Tivantinib but not crizotinib effected microtubule dynamics, disrupting mitotic spindles by a mechanism consistent with it functioning as a microtubule depolymerizer. Tivantinib activity is independent of MET signaling in NSCLC and suggests alternative mechanisms of action that should be considered when interpreting the results from on-going clinical studies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrrolidinones/pharmacology , Quinolines/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Crizotinib , Humans , Indoles/pharmacology , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Sulfones/pharmacology
12.
Proc Natl Acad Sci U S A ; 111(45): E4869-77, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25349422

ABSTRACT

The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 1 , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 4 , Amino Acid Substitution , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mutation, Missense , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/chemistry , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Structure-Activity Relationship
13.
Nat Chem Biol ; 10(12): 1006-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25326665

ABSTRACT

Her3 (also known as ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be 'undruggable' using ATP-competitive small molecules because it lacks appreciable kinase activity. Here we report what is to our knowledge the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3-dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3-dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and ∼60 other pseudokinases found in human cells.


Subject(s)
Acrylamides/pharmacology , Adenine/analogs & derivatives , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/chemistry , Receptor, ErbB-2/chemistry , Receptor, ErbB-3/antagonists & inhibitors , Acrylamides/chemical synthesis , Adamantane/chemistry , Adenine/chemical synthesis , Adenine/pharmacology , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Antineoplastic Agents/chemical synthesis , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Cysteine/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Targeted Therapy , Protein Kinase Inhibitors/chemical synthesis , Protein Multimerization , Proteolysis , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/genetics , Signal Transduction
14.
Clin Cancer Res ; 20(24): 6551-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25294908

ABSTRACT

PURPOSE: Targetable oncogenic alterations are detected more commonly in patients with non-small cell lung cancer (NSCLC) who never smoked cigarettes. For such patients, specific kinase inhibitors have emerged as effective clinical treatments. However, the currently known oncogenic alterations do not account for all never smokers who develop NSCLC. We sought to identify additional oncogenic alterations from patients with NSCLC to define additional treatment options. EXPERIMENTAL DESIGN: We analyzed 576 lung adenocarcinomas from patients of Asian and Caucasian ethnicity. We identified a subset of cancers that did not harbor any known oncogenic alteration. We performed targeted next-generation sequencing (NGS) assay on 24 patients from this set with >75% tumor cell content. RESULTS: EGFR mutations were the most common oncogenic alteration from both Asian (53%) and Caucasian (41.6%) patients. No known oncogenic alterations were present in 25.7% of Asian and 31% of Caucasian tumor specimens. We identified a FGFR3-TACC3 fusion event in one of 24 patients from this subset using targeted NGS. Two additional patients harboring FGFR3-TACC3 were identified by screening our entire cohort (overall prevalence, 0.5%). Expression of FGFR3-TACC3 led to IL3 independent growth in Ba/F3 cells. These cells were sensitive to pan-fibroblast growth factor receptor (pan-FGFR) inhibitors but not the epidermal growth factor (EGFR) inhibitor gefitinib. CONCLUSIONS: FGFR3-TACC3 rearrangements occur in a subset of patients with lung adenocarcinoma. Such patients should be considered for clinical trials featuring FGFR inhibitors.


Subject(s)
Adenocarcinoma/genetics , Lung Neoplasms/genetics , Microtubule-Associated Proteins/genetics , Oncogene Proteins, Fusion/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/genetics , Computational Biology , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Female , Gene Frequency , Genomics , Humans , Lung Neoplasms/pathology , Male , Neoplasm Staging , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacology , Risk Factors , Translocation, Genetic
15.
Cancer Res ; 73(8): 2574-86, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23436801

ABSTRACT

mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival, and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here, we report the characterization of Torin2, a second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC(50) of 250 pmol/L with approximately 800-fold selectivity for cellular mTOR versus phosphoinositide 3-kinase (PI3K). Torin2 also exhibited potent biochemical and cellular activity against phosphatidylinositol-3 kinase-like kinase (PIKK) family kinases including ATM (EC(50), 28 nmol/L), ATR (EC(50), 35 nmol/L), and DNA-PK (EC(50), 118 nmol/L; PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single-agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncologic settings where mTOR signaling has a pathogenic role.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Cycle Proteins/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins , Autophagy/drug effects , Benzimidazoles/pharmacology , Binding, Competitive , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Synergism , Humans , Kinetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Naphthyridines/administration & dosage , Naphthyridines/chemistry , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays , ras Proteins/genetics
16.
Cancer Res ; 73(2): 834-43, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23172312

ABSTRACT

The clinical efficacy of EGF receptor (EGFR) kinase inhibitors gefitinib and erlotinib is limited by the development of drug resistance. The most common mechanism of drug resistance is the secondary EGFR T790M mutation. Strategies to overcome EGFR T790M-mediated drug resistance include the use of mutant selective EGFR inhibitors, including WZ4002, or the use of high concentrations of irreversible quinazoline EGFR inhibitors such as PF299804. In the current study, we develop drug-resistant versions of the EGFR-mutant PC9 cell line, which reproducibly develops EGFR T790M as a mechanism of drug resistance to gefitinib. Neither PF299804-resistant nor WZ4002-resistant clones of PC9 harbor EGFR T790M. Instead, they have shown activated insulin-like growth factor receptor (IGF1R) signaling as a result of loss of expression of IGFBP3 with the IGF1R inhibitor, BMS 536924, restoring EGFR inhibitor sensitivity. Intriguingly, prolonged exposure to either PF299804 or WZ4002 results in the emergence of a more drug-resistant subclone that exhibits ERK activation. A MEK inhibitor, CI-1040, partially restores sensitivity to the EGFR/IGF1R inhibitor combination. Moreover, an IGF1R or MEK inhibitor used in combination with either PF299804 or WZ4002 completely prevents the emergence of drug-resistant clones in this model system. Our studies suggest that more effective means of inhibiting EGFR T790M will prevent the emergence of this common drug resistance mechanism in EGFR-mutant non-small cell lung cancer. However, multiple drug resistance mechanisms can still emerge. Preventing the emergence of drug resistance, by targeting pathways that become activated in resistant cancers, may be a more effective clinical strategy.


Subject(s)
Acrylamides/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Quinazolinones/pharmacology , Receptor, IGF Type 1/metabolism , Cell Line, Tumor , Humans , Lung Neoplasms/metabolism
17.
Cancer Discov ; 2(10): 934-47, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22961667

ABSTRACT

The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors is limited by the development of drug resistance. The irreversible EGFR kinase inhibitor WZ4002 is effective against the most common mechanism of drug resistance mediated by the EGFR T790M mutation. Here, we show, in multiple complementary models, that resistance to WZ4002 develops through aberrant activation of extracellular signal-regulated kinase (ERK) signaling caused by either an amplification of mitogen-activated protein kinase 1 (MAPK1) or by downregulation of negative regulators of ERK signaling. Inhibition of MAP-ERK kinase (MEK) or ERK restores sensitivity to WZ4002 and prevents the emergence of drug resistance. We further identify MAPK1 amplification in an erlotinib-resistant EGFR-mutant non-small cell lung carcinoma patient. In addition, the WZ4002-resistant MAPK1-amplified cells also show an increase both in EGFR internalization and a decrease in sensitivity to cytotoxic chemotherapy. Our findings provide insights into mechanisms of drug resistance to EGFR kinase inhibitors and highlight rational combination therapies that should be evaluated in clinical trials.


Subject(s)
Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Acrylamides/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation , ErbB Receptors/genetics , Erlotinib Hydrochloride , Gefitinib , Humans , Lung Neoplasms/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Quinazolines/pharmacology , Quinazolines/therapeutic use , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/biosynthesis , Receptor, ErbB-2/genetics
18.
Cancer Res ; 72(13): 3302-11, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22552292

ABSTRACT

Tyrosine kinase inhibitors (TKI) that target the EGF receptor (EGFR) are effective in most non-small cell lung carcinoma (NSCLC) patients whose tumors harbor activating EGFR kinase domain mutations. Unfortunately, acquired resistance eventually emerges in these chronically treated cancers. Two of the most common mechanisms of acquired resistance to TKIs seen clinically are the acquisition of a secondary "gatekeeper" T790M EGFR mutation that increases the affinity of mutant EGFR for ATP and activation of MET to offset the loss of EGFR signaling. Although up to one-third of patient tumors resistant to reversible EGFR TKIs harbor concurrent T790M mutation and MET amplification, potential therapies for these tumors have not been modeled in vivo. In this study, we developed a preclinical platform to evaluate potential therapies by generating transgenic mouse lung cancer models expressing EGFR-mutant Del19-T790M or L858R-T790M, each with concurrent MET overexpression. We found that monotherapy targeting EGFR or MET alone did not produce significant tumor regression. In contrast, combination therapies targeting EGFR and MET simultaneously were highly efficacious against EGFR TKI-resistant tumors codriven by Del19-T790M or L858R-T790M and MET. Our findings therefore provide an in vivo model of intrinsic resistance to reversible TKIs and offer preclinical proof-of-principle that combination targeting of EGFR and MET may benefit patients with NSCLC.


Subject(s)
ErbB Receptors/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lung Neoplasms/therapy , Mutation , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Base Sequence , DNA Primers , ErbB Receptors/genetics , HSP90 Heat-Shock Proteins/genetics , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction
19.
Nat Med ; 18(3): 382-4, 2012 Feb 12.
Article in English | MEDLINE | ID: mdl-22327622

ABSTRACT

Applying a next-generation sequencing assay targeting 145 cancer-relevant genes in 40 colorectal cancer and 24 non-small cell lung cancer formalin-fixed paraffin-embedded tissue specimens identified at least one clinically relevant genomic alteration in 59% of the samples and revealed two gene fusions, C2orf44-ALK in a colorectal cancer sample and KIF5B-RET in a lung adenocarcinoma. Further screening of 561 lung adenocarcinomas identified 11 additional tumors with KIF5B-RET gene fusions (2.0%; 95% CI 0.8-3.1%). Cells expressing oncogenic KIF5B-RET are sensitive to multi-kinase inhibitors that inhibit RET.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/genetics , Kinesins/genetics , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ret/genetics , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase , Animals , Biopsy , Cell Transformation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Nucleotide Sequencing , Humans , Kinesins/antagonists & inhibitors , Lung Neoplasms/pathology , Mice , NIH 3T3 Cells , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors
20.
Sci Transl Med ; 3(99): 99ra86, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21900593

ABSTRACT

Cetuximab, an antibody directed against the epidermal growth factor receptor, is an effective clinical therapy for patients with colorectal, head and neck, and non-small cell lung cancer, particularly for those with KRAS and BRAF wild-type cancers. Treatment in all patients is limited eventually by the development of acquired resistance, but little is known about the underlying mechanism. Here, we show that activation of ERBB2 signaling in cell lines, either through ERBB2 amplification or through heregulin up-regulation, leads to persistent extracellular signal-regulated kinase 1/2 signaling and consequently to cetuximab resistance. Inhibition of ERBB2 or disruption of ERBB2/ERBB3 heterodimerization restores cetuximab sensitivity in vitro and in vivo. A subset of colorectal cancer patients who exhibit either de novo or acquired resistance to cetuximab-based therapy has ERBB2 amplification or high levels of circulating heregulin. Collectively, these findings identify two distinct resistance mechanisms, both of which promote aberrant ERBB2 signaling, that mediate cetuximab resistance. Moreover, these results suggest that ERBB2 inhibitors, in combination with cetuximab, represent a rational therapeutic strategy that should be assessed in patients with cetuximab-resistant cancers.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Neoplasms/drug therapy , Receptor, ErbB-2/metabolism , Signal Transduction/physiology , Animals , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Cetuximab , ErbB Receptors/genetics , Humans , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Transplantation , Neoplasms/metabolism , Neuregulin-1/genetics , Neuregulin-1/metabolism , Receptor, ErbB-2/genetics , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...