Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(2): e53742, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465142

ABSTRACT

Background Inherited retinal diseases (IRD) represent a prominent etiology of visual impairment on a global scale. The lack of a clear definition of the etiology and genotypic spectrum of IRD is attributed to the significant genetic variability seen. Additionally, there is a scarcity of available data about the correlations between genotypes and phenotypes in this context. This study aimed to clarify the range of mutations and the associations between genotypes and phenotypes in IRD. Methods This cohort consists of 223 patients who have been diagnosed with a range of retinal illnesses, such as retinitis pigmentosa (RP), Stargardt (STGD)/STGD-like disease, Usher syndrome, and Leber congenital amaurosis (LCA). The validation of each mutation and its pathogenicity was conducted by bioinformatics analysis, Sanger sequencing-based co-segregation testing, and computational assessment. The link between genotype and phenotype was analyzed in all patients who possessed mutations as described in the recommendations established by the American College of Medical Genetics. Results A total of 223 cases, comprising Turkish and Syrian families, were examined, revealing the presence of 175 distinct mutations in the IRD gene. Among these mutations, 58 were identified as unique, indicating that they had not been previously reported. A total of 119 mutations were identified to be likely pathogenic, while 104 mutations were classified as pathogenic. The study identified patterns of heredity, namely autosomal recessive, dominant, and X-linked inheritance. Conclusions The findings of this study broaden the clinical and molecular aspects of IRD and further enhance our understanding of its complex nature. The discovery of previously unknown relationships between genetic variations and observable traits, as well as the wide range of genetic variants associated with IRD, significantly contributes to our existing understanding of the diverse phenotypic and genotypic characteristics of IRD. This new information will prove invaluable in facilitating accurate clinical diagnoses as well as personalized therapeutic interventions for individuals affected by IRD.

2.
Genet Med ; 23(9): 1715-1725, 2021 09.
Article in English | MEDLINE | ID: mdl-34054129

ABSTRACT

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


Subject(s)
Eye Abnormalities , Neurodevelopmental Disorders , Animals , Eye Abnormalities/genetics , Genetic Association Studies , Humans , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Receptors, Cell Surface , Zebrafish/genetics
3.
Hemoglobin ; 43(4-5): 277-279, 2019.
Article in English | MEDLINE | ID: mdl-31530045

ABSTRACT

We report a de novo heterozygous variant of the ß-globin chain that showing a mild ß-thalassemia intermedia (ß-TI) phenotype. He presented with mild anemia, splenomegaly, reticulocytosis, and poikilocytosis and tear drop cells on the blood smear; Immune mediated hemolysis, red cell membrane and enzyme defects, were excluded; hemoglobin (Hb) electrophoresis showed an elevation of Hb F. Molecular analysis of the ß-globin gene showed a heterozygous variation in exon 3 (HBB: c.379delG, p.Val127Cysfs*32) in the absence of an α-globin gene mutation or mutations that modulate Hb F expression.


Subject(s)
Mutation , beta-Globins/genetics , beta-Thalassemia/genetics , Child , Fetal Hemoglobin/analysis , Hemoglobins, Abnormal/genetics , Heterozygote , Humans , Male , Phenotype , Turkey
4.
Acta Neurol Belg ; 118(4): 567-572, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29480456

ABSTRACT

Myotonia congenita is an inherited muscle disease present from childhood that is characterized by impaired muscle relaxation after contraction resulting in muscle stiffness; moreover, skeletal striated muscle groups may be involved. Myotonia congenita occurs due to chloride (Cl) channel mutations that reduce the stabilizing Cl conductance, and it is caused by mutations in the CLCN1 gene. This paper describes four patients from two different healthy consanguineous Turkish families with muscle stiffness and easy fatigability. A genetic investigation was performed. Mutation analyses showed a homozygous p.Tyr150* (c.450C > A) mutation in patients 1, 2 and 3 and a homozygous p.Leu159Cysfs*11 (c.475delC) mutation in patient 4 in the CLCN1 gene. These mutations have never been reported before and in silico analyses showed that the mutations were disease causing. They may be predicted to cause nonsense-mediated mRNA decay. Our data expand the spectrum of CLCN1 mutations and provide insights for genotype-phenotype correlations of myotonia congenita.


Subject(s)
Chloride Channels/genetics , Mutation , Myotonia Congenita/genetics , Adolescent , Child , Consanguinity , Genetic Association Studies , Humans , Male , Muscle, Skeletal/pathology , Myotonia Congenita/pathology , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...