Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Vaccine ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880692

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that can infect a variety of mammals including humans and causes toxoplasmosis. Unfortunately, a protective and safe vaccine against toxoplasmosis hasn't been developed yet. In this study, we developed a DNA vaccine encoding the SRS13 protein and immunized BALB/c mice thrice with pVAX1-SRS13 through the intramuscular route (IM) or intradermally using an electroporation device (ID + EP). The immunogenicity of pVAX1-SRS13 was analyzed by ELISA, Western blot, cytokine ELISA, and flow cytometry. The protective efficacy of the pVAX1-SRS13 was investigated by challenging mice orally with T. gondii PRU strain tissue cysts. The results revealed that pVAX1-SRS13 administered through IM or ID + EP routes induced high level of anti-SRS13 IgG antibody responses (P = 0.0037 and P < 0.0001). The IFN-γ level elicited by the pVAX1-SRS13 (ID + EP) was significantly higher compared to the control group (P = 0.00159). In mice administered with pVAX1-SRS13 (ID + EP), CD8+ cells secreting IFN-γ was significantly higher compared to pVAX1-SRS13 (IM) (P = 0.0035) and the control group (P = 0.0068). Mice vaccinated with the SRS13 DNA vaccine did not induce significant IL-4 level. Moreover, a significant reduction in the number of tissue cysts and the load of T. gondii DNA was detected in brains of mice administered with pVAX1-SRS13 through ID + EP and IM routes compared to controls. In conclusion, the SRS13 DNA vaccine was found to be highly immunogenic and confers strong protection against chronic toxoplasmosis.

2.
Sci Rep ; 14(1): 13865, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879684

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Mice, Inbred BALB C , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, DNA , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Mice , COVID-19/prevention & control , COVID-19/immunology , HEK293 Cells , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology
3.
ACS Omega ; 8(48): 46101-46112, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075788

ABSTRACT

The enzyme steroid type II 5-alpha-reductase (SRD5α2) is responsible for the conversion of testosterone to dihydrotestosterone (DHT), which is involved in prostate cancer, benign prostatic hyperplasia, and androgenic alopecia. Inhibition of SRD5α2 activity has been explored and presented as a potential treatment for these conditions, but current drugs have side effects and alternative treatment approaches are needed. The CRISPR/Cas9 system, an innovative gene-editing tool, shows potential for targeting the SRD5α2 gene knockout as a therapeutic approach. Liposomes have been used for the immobilization and delivery of different proteins, and studies have shown that liposomes can enhance the stability and activity of enzymes. In this study, we provided the immobilization of Cas9 protein by encapsulating it in a novel cationic liposome formulation that carries sgRNA on its outer surface for gene delivery approaches. This novel delivery system has shown promising results in terms of physicochemical properties, stability, cytotoxicity, in vitro cellular uptake, and gene knockout efficiency, together with providing flexibility in sgRNA selection. The optimized final formulations showed an average diameter of 229.1 ± 3.66 nm, a polydispersity index of 0.089 ± 0.013, and a zeta potential value of 25.7 ± 0.87 mV. The encapsulation efficiency of the developed formulations has been revealed as 80.60%. The cellular uptake efficiency was evaluated and measured as 45.6% for the final formulation. Furthermore, the Lipo/Cas9:sgRNA (1.5:1) formulation decreased the relative SRD5α2 mRNA expression by 29.7% compared to the control group. The results of this study reveal that the liposomal formulation based on enzyme immobilization of Cas9 protein using CRISPR technology, an innovative gene-editing tool for SRD5α2 suppression, might be an alternative treatment option for prostate cancer or BPH treatment without current drug side effects.

4.
AAPS PharmSciTech ; 24(3): 77, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899198

ABSTRACT

Infectious diseases are still the major issue not only due to antibiotic resistance but also causing deaths if not diagnosed at early-stages. Different approaches including nanosized drug delivery systems and theranostics are researched to overcome antibiotic resistance, decrease the side effects of antibiotics, improve the treatment response, and early diagnose. Therefore, in the present study, nanosized, radiolabeled with 99mTc, colistin encapsulated, neutral and cationic liposome formulations were prepared as the theranostic agent for Pseudomonas aeruginosa infections. Liposomes exhibited appropriate physicochemical properties thanks to their nano-particle size (between 173 and 217 nm), neutral zeta potential value (about - 6.5 and 2.8 mV), as well as encapsulation efficiency of about 75%. All liposome formulations were radiolabeled with over 90% efficiency, and the concentration of stannous chloride was found as 1 mg.mL-1 to obtain maximum radiolabeling efficiency. In alamar blue analysis, neutral liposome formulations were found more biocompatible compared with the cationic formulations. Neutral colistin encapsulated liposomes were found to be more effective against P. aeruginosa strain according to their time-dependent antibacterial effect, in addition to their highest bacterial binding capacity. As conclusion, theranostic, nanosized, colistin encapsulated, neutral liposome formulations were found as promising agents for the imaging and treating of P. aeruginosa infections.


Subject(s)
Liposomes , Pseudomonas Infections , Humans , Liposomes/chemistry , Colistin/pharmacology , Colistin/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Precision Medicine , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa
5.
ACS Nano ; 16(2): 1940-1953, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35099172

ABSTRACT

The lack of safe and effective delivery across the blood-brain barrier and the profound immune suppressive microenvironment are two main hurdles to glioblastoma (GBM) therapies. Extracellular vesicles (EVs) have been used as therapeutic delivery vehicles to GBM but with limited efficacy. We hypothesized that EV delivery to GBM can be enhanced by (i) modifying the EV surface with a brain-tumor-targeting cyclic RGDyK peptide (RGD-EV) and (ii) using bursts of radiation for enhanced accumulation. In addition, EVs were loaded with small interfering RNA (siRNA) against programmed cell death ligand-1 (PD-L1) for immune checkpoint blockade. We show that this EV-based strategy dramatically enhanced the targeting efficiency of RGD-EV to murine GBM, while the loaded siRNA reversed radiation-stimulated PD-L1 expression on tumor cells and recruited tumor-associated myeloid cells, offering a synergistic effect. The combined therapy significantly increased CD8+ cytotoxic T cells activity, halting tumor growth and prolonging animal survival. The selected cell source for EVs isolation and the presented functionalization strategy are suitable for large-scale production. These results provide an EV-based therapeutic strategy for GBM immune checkpoint therapy which can be translated to clinical applications.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Animals , B7-H1 Antigen , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Extracellular Vesicles/metabolism , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Immune Checkpoint Inhibitors , Mice , Tumor Microenvironment
6.
Pharm Dev Technol ; 27(2): 145-154, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35021932

ABSTRACT

This study is focused on the preparation and characterization of erucic acid (EA) and phytosphingosine (PS) containing cationic nanoemulsions (NEs) for plasmid DNA (pDNA) delivery. Repurposing of cationic agents guided us to PS, previously used for enhanced interaction with negatively charged surfaces. It was reported that EA might act anti-tumoral on C6 glioma, melanoma, neuroblastoma, and glioblastoma. However, there is only one study about mixed oleic acid-EA liposomes. This gap attracted our interest in the possible synergistic effects of PS and EA on MDA-MB-231 and MCF-7 breast cancer cells. Three cationic NEs (NE 1, NE 2, and NE 3) were prepared and characterized in terms of droplet size (DS), polydispersity index (PDI), and zeta potential (ZP) before and after complexation with pDNA, long-term stability, SDS release, cytotoxicity, and transfection studies. The cationic NEs had DSs of <200 nm, PDIs <0.3, and ZPs > +30 mV. Long-term stability studies revealed that NE 2 and NE 3 were stable. NE 1-pDNA had appropriate particle properties. NE 2 reduced the viability of MDA-MB-231 cells to 11% and of MCF-7 cells to 13% and resulted in the highest number of transfected cells. To sum up, NE 2 containing PS and EA is appropriate for delivering pDNA.


Subject(s)
Breast Neoplasms , Cations , Cell Survival , DNA , Erucic Acids , Female , Humans , Particle Size , Plasmids/genetics , Sphingosine/analogs & derivatives , Transfection
7.
Daru ; 29(2): 329-340, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34491567

ABSTRACT

BACKGROUND: Developing an alternative and efficient therapy for wound healing has been an important research topic for pharmaceutical sciences. A straightforward but effective system for delivering fibroblast growth factor-2 (FGF-2) encoding plasmid DNA (pFGF-2) for wound healing therapy was aimed to develop in this study. METHODS: In order to provide the delivery of pFGF-2, a delivery vector, namely, cationic lipid nanoparticle (cLN) was developed by the melt-emulsification process, complexed with pFGF-2 to form a lipoplex system and further characterized. The pFGF-2 binding and protecting ability of lipoplexes were evaluated. The cytotoxicity and transfection efficiency of the lipoplexes, FGF-2 expression levels, and in vitro wound healing ability have been investigated on the L929 fibroblast cell line. RESULTS: The obtained lipoplex system has a particle size of 88.53 nm with a low PDI (0.185), and zeta potential values of 27.8 mV with a spherical shape. The ability of cLNs to bind pFGF-2 and protect against nucleases was demonstrated by gel retardation assay. Furthermore, the developed FGF-2 carrying lipoplexes system showed significant transfection and FGF-2 expression ability comparing naked plasmid. Finally, scratch assay revealed that the developed system is able to promote in vitro cell proliferation/migration in 48 h. CONCLUSION: Promising results have been achieved with the use of lipoplexes carrying pFGF-2, and this approach could be considered as a potentially applicable concept for the future gene-based wound healing therapies.


Subject(s)
Fibroblast Growth Factor 2/genetics , Plasmids/genetics , Wound Healing , Animals , Cell Line , Cell Proliferation/drug effects , Genetic Therapy , Genetic Vectors/pharmacology , HEK293 Cells , Humans , Liposomes , Mice , Models, Biological , Nanoparticles , Particle Size
8.
Turk J Pharm Sci ; 18(3): 344-351, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34157825

ABSTRACT

Objectives: Gene therapy approaches have become increasingly attractive in the medical, pharmaceutical, and biotechnological industries due to their applicability in the treatment of diseases with no effective conventional therapy. Non-viral delivery using cationic solid lipid nanoparticles (cSLNs) can be useful to introduce large nucleic acids to target cells. A careful selection of components and their amounts is critical to obtain a successful delivery system. In this study, solid Witepsol nanoparticles were formulated, characterized, and evaluated in vitro for gene delivery purposes. Materials and Methods: Solid Witepsol nanoparticles were formulated through the microemulsion dilution technique using two grades of Witepsol and three surfactants, namely Cremephor RH40, Kolliphor HS15, and Peceol. Dimethyldioctadecylammonium bromide was incorporated into the system as a cationic lipid. Twelve combinations of these ingredients were formulated. The obtained nanoparticles were then evaluated for particle size, zeta potential, DNA binding and protection ability, cytotoxicity, and transfection ability. Results: Particle sizes of the prepared cationic cSLNs were between 13.43±0.06 and 68.80±0.78 nm. Their zeta potential, which is important for DNA binding efficiency, was determined at >+40 mV. Gel retardation assays revealed that the obtained cSLNs can form a compact complex with plasmid DNA (pDNA) encoding green fluorescent protein and that this complex can protect pDNA from DNase I-mediated degradation. Cytotoxicity evaluation of nanoparticles was performed on the L929 cell line. In vitro transfection data revealed that solid Witepsol nanoparticles could effectively transfect fibroblasts. Conclusion: Our findings indicate that solid Witepsol nanoparticles prepared using the microemulsion dilution technique are promising non-viral delivery systems for gene therapy.

9.
Nanomedicine (Lond) ; 16(12): 963-978, 2021 05.
Article in English | MEDLINE | ID: mdl-33970666

ABSTRACT

Aim: The CRISPR/Cas9 system is a promising gene-editing tool for various anticancer therapies; however, development of a biocompatible, nonviral and efficient delivery of CRISPR/Cas9 expression systems remains a challenge. Materials & methods: Solid lipid nanoparticles (SLNs) were produced based on pseudo and 3D ternary plots. Obtained SLNs and their complexes with PX458 plasmid DNA were characterized and evaluated in terms of cytotoxicity and transfection efficiency. Results: SLNs were found to be nanosized, monodispersed, stable and nontoxic. Furthermore, they revealed similar transfection efficiency as the positive control. Conclusion: Overall, we have achieved a good SLN basis for CRISPR/Cas9 delivery and have the potential to produce SLNs with targeted anticancer properties by modifying production parameters and components to facilitate translating CRISPR/Cas9 into preclinical studies.


Subject(s)
Gene Editing , Nanoparticles , CRISPR-Cas Systems/genetics , Lipids , Transfection
10.
Pharm Res ; 37(8): 165, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32761250

ABSTRACT

PURPOSE: Paclitaxel is a first-line drug for the therapy of lung cancer, however, drug resistance is a serious limiting factor, related to overexpression of anti-apoptotic proteins like survivin. To overcome this phenomenon, developing novel ultrasound responsive nanobubbles - nanosized drug delivery system- for the delivery of paclitaxel and siRNA in order to silence survivin expression in the presence of ultrasound was aimed. METHODS: Paclitaxel-carrying nanobubble formulation was obtained by modifying the multistep method. Then, the complex formation of the nanobubbles - paclitaxel formulation with survivin-siRNA, was examined in terms of particle size, polydispersity index, zeta potential, and morphology. Furthermore, siRNA binding and protecting ability, cytotoxicity, cellular uptake, gene silencing, and induction of apoptosis studies were investigated in terms of lung cancer cells. RESULTS: Developed nanobubbles have particle sizes of 218.9-369.6 nm, zeta potentials of 27-34 mV, were able to protect siRNA from degradation and delivered siRNA into the lung cancer cells. Survivin expression was significantly lower compared with the control groups and enhanced apoptosis was induced by the co-delivery of survivin-siRNA and paclitaxel. Furthermore, significantly higher effects were obtained in the presence of ultrasound induction. CONCLUSION: The ultrasound responsive nanobubble system carrying paclitaxel and survivin-siRNA is a promising and effective approach against lung cancer cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Paclitaxel/administration & dosage , RNA, Small Interfering/administration & dosage , A549 Cells , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival , Drug Carriers/chemistry , Gene Silencing , Humans , Paclitaxel/pharmacology , Survivin/genetics , Survivin/metabolism , Ultrasonic Waves
11.
Int J Pharm ; 566: 149-156, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31129344

ABSTRACT

Lung cancer remains 23% of cancer-related death worldwide, ranking on first place for men and second place for women. Almost each cancer type has a great deal in common, overexpression of the apoptosis inhibitor survivin. Chemotherapy with anticancer drugs is leading to side effects. Drug targeting by the use of nanobubbles is a useful strategy to reduce side effects. Nanobubbles in cancer are one of the most investigated carriers in the last years. The size of nanobubbles (1-500 nm) is bigger than the pore size of healthy tissues, but smaller than the pores of cancer tissues. Thus, it is not possible for the drug to leave the blood stream and enter the tissue, but it can enter the cancer tissue through the pores, where it can accumulate. Therefore, the probability of undesired side effects decreases. For that reason, the development of nanobubbles containing paclitaxel and survivin inhibitor sepantronium bromide (YM155) were carried out. Characterization studies in terms of particle size, size distribution, zeta potential and morphology, and investigation of their effects on lung cancer cells were performed. To the best of our knowledge, there is no information in the literature about combining paclitaxel and YM155 loaded nanobubbles with ultrasound exposure.


Subject(s)
Antineoplastic Agents, Phytogenic , Imidazoles , Lung Neoplasms/drug therapy , Nanostructures , Naphthoquinones , Paclitaxel , Survivin/antagonists & inhibitors , A549 Cells , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Cell Survival/drug effects , Drug Liberation , Humans , Imidazoles/administration & dosage , Imidazoles/chemistry , Nanostructures/administration & dosage , Nanostructures/chemistry , Naphthoquinones/administration & dosage , Naphthoquinones/chemistry , Paclitaxel/administration & dosage , Paclitaxel/chemistry
12.
ACS Nano ; 13(4): 4028-4040, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30916923

ABSTRACT

Targeted therapy against the programmed cell death ligand-1 (PD-L1) blockade holds considerable promise for the treatment of different tumor types; however, little effect has been observed against gliomas thus far. Effective glioma therapy requires a delivery vehicle that can reach tumor cells in the central nervous system, with limited systemic side effect. In this study, we developed a cyclic peptide iRGD (CCRGDKGPDC)-conjugated solid lipid nanoparticle (SLN) to deliver small interfering RNAs (siRNAs) against both epidermal growth factor receptor (EGFR) and PD-L1 for combined targeted and immunotherapy against glioblastoma, the most aggressive type of brain tumors. Building on recent studies showing that radiation therapy alters tumors for enhanced nanotherapeutic delivery in tumor-associated macrophage-dependent fashion, we showed that low-dose radiation primes targeted SLN uptake into the brain tumor region, leading to enhanced downregulation of PD-L1 and EGFR. Bioluminescence imaging revealed that radiation therapy followed by systemic administration of targeted SLN leads to a significant decrease in glioblastoma growth and prolonged mouse survival. This study combines radiation therapy to prime the tumor for nanoparticle uptake along with the targeting effect of iRGD-conjugated nanoparticles to yield a straightforward but effective approach for combined EGFR inhibition and immunotherapy against glioblastomas, which can be extended to other aggressive tumor types.


Subject(s)
Brain Neoplasms/therapy , Gene Transfer Techniques , Glioblastoma/therapy , Nanoparticles/chemistry , RNAi Therapeutics , Animals , B7-H1 Antigen/genetics , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , ErbB Receptors/genetics , Female , Glioblastoma/genetics , Glioblastoma/radiotherapy , Mice, Inbred C57BL , Nanomedicine , Peptides, Cyclic/chemistry , RNAi Therapeutics/methods
SELECTION OF CITATIONS
SEARCH DETAIL