Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Neurooncol Adv ; 6(1): vdae093, 2024.
Article in English | MEDLINE | ID: mdl-38946879

ABSTRACT

Background: Primary CNS lymphoma (PCNSL) and glioblastoma (GBM) both represent frequent intracranial malignancies with differing clinical management. However, distinguishing PCNSL from GBM with conventional MRI can be challenging when atypical imaging features are present. We employed advanced dMRI for noninvasive characterization of the microstructure of PCNSL and differentiation from GBM as the most frequent primary brain malignancy. Methods: Multiple dMRI metrics including Diffusion Tensor Imaging, Neurite Orientation Dispersion and Density Imaging, and Diffusion Microstructure Imaging were extracted from the contrast-enhancing tumor component in 10 PCNSL and 10 age-matched GBM on 3T MRI. Imaging findings were correlated with cell density and axonal markers obtained from histopathology. Results: We found significantly increased intra-axonal volume fractions (V-intra and intracellular volume fraction) and microFA in PCNSL compared to GBM (all P < .001). In contrast, mean diffusivity (MD), axial diffusivity (aD), and microADC (all P < .001), and also free water fractions (V-CSF and V-ISO) were significantly lower in PCNSL (all P < .01). Receiver-operating characteristic analysis revealed high predictive values regarding the presence of a PCNSL for MD, aD, microADC, V-intra, ICVF, microFA, V-CSF, and V-ISO (area under the curve [AUC] in all >0.840, highest for MD and ICVF with an AUC of 0.960). Comparative histopathology between PCNSL and GBM revealed a significantly increased cell density in PCNSL and the presence of axonal remnants in a higher proportion of samples. Conclusions: Advanced diffusion imaging enables the characterization of the microstructure of PCNSL and reliably distinguishes PCNSL from GBM. Both imaging and histopathology revealed a relatively increased cell density and a preserved axonal microstructure in PCNSL.

2.
Sci Transl Med ; 16(751): eadj9672, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865481

ABSTRACT

Cancer treatment with anti-PD-1 immunotherapy can cause central nervous system immune-related adverse events (CNS-irAEs). The role of microglia in anti-PD-1 immunotherapy-induced CNS-irAEs is unclear. We found that anti-PD-1 treatment of mice caused morphological signs of activation and major histocompatibility complex (MHC) class II up-regulation on microglia. Functionally, anti-PD-1 treatment induced neurocognitive deficits in mice, independent of T cells, B cells, and natural killer cells. Instead, we found that microglia mediated these CNS-irAEs. Single-cell RNA sequencing revealed major transcriptional changes in microglia upon anti-PD-1 treatment. The anti-PD-1 effects were mediated by anti-PD-1 antibodies interacting directly with microglia and were not secondary to peripheral T cell activation. Using a proteomics approach, we identified spleen tyrosine kinase (Syk) as a potential target in activated microglia upon anti-PD-1 treatment. Syk inhibition reduced microglia activation and improved neurocognitive function without impairing anti-melanoma effects. Moreover, we analyzed CNS tissue from a patient cohort that had received anti-PD-1 treatment. Imaging mass cytometry revealed that anti-PD-1 treatment of patients was associated with increased surface marker expression indicative of microglia activation. In summary, we identified a disease-promoting role for microglia in CNS-irAEs driven by Syk and provide an inhibitor-based approach to interfere with this complication after anti-PD-1 immunotherapy.


Subject(s)
Central Nervous System , Immunotherapy , Microglia , Programmed Cell Death 1 Receptor , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Immunotherapy/adverse effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Central Nervous System/pathology , Central Nervous System/drug effects , Mice, Inbred C57BL , Syk Kinase/metabolism , Mice
3.
Nat Cancer ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741011

ABSTRACT

Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.

4.
Oper Neurosurg (Hagerstown) ; 26(1): 71-77, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37747369

ABSTRACT

BACKGROUND AND OBJECTIVES: To systematically describe pertinent, intraoperative anatomic findings encountered when approaching spinal cerebrospinal fluid (CSF) leaks and CSF-venous fistulas in spontaneous intracranial hypotension (SIH). METHODS: In a retrospective study, we included surgically treated patients suffering from SIH at our institution from April 2018 to March 2022. Anatomic, intraoperative data were extracted from operative notes and supplemented with data from surgical videos and images. Prominent anatomic features were compared among different types of CSF leaks. RESULTS: The study cohort consists of 120 patients with a mean age of 45.2 years. We found four distinct patterns of spinal membranes specifically associated with different types of CSF leaks: (i) thick, dorsal membranes, which were hypervascular and may mimic the dura (pseudodura); (ii) thin, lateral membranes encapsulating a ventral epidural CSF compartment (confining the spinal longitudinal extradural CSF collection); (iii) ventral membranes constituting a transdural funnel-like CSF channel; and (iv) lateral membranes forming spinal cysts/meningeal diverticulae associated with lateral CSF leaks. The latter three types resemble a layer of arachnoid herniated through the dural defect. CONCLUSION: We describe four distinct spinal (neo-)membranes in association with spinal CSF leaks. Formation of these membranes, or emergence by herniation of arachnoid through a dural defect, constitutes a specific pathoanatomic feature of patients with SIH and CSF leaks. Recognition of these membranes is of paramount importance for diagnosis and treatment of patients with spinal CSF leaks.


Subject(s)
Intracranial Hypotension , Humans , Middle Aged , Intracranial Hypotension/complications , Intracranial Hypotension/diagnostic imaging , Retrospective Studies , Cerebrospinal Fluid Leak/complications , Cerebrospinal Fluid Leak/diagnostic imaging , Cerebrospinal Fluid Leak/surgery , Dura Mater , Spine
5.
AJNR Am J Neuroradiol ; 44(11): 1262-1269, 2023 11.
Article in English | MEDLINE | ID: mdl-37884304

ABSTRACT

BACKGROUND AND PURPOSE: Glioblastomas and metastases are the most common malignant intra-axial brain tumors in adults and can be difficult to distinguish on conventional MR imaging due to similar imaging features. We used advanced diffusion techniques and structural histopathology to distinguish these tumor entities on the basis of microstructural axonal and fibrillar signatures in the contrast-enhancing tumor component. MATERIALS AND METHODS: Contrast-enhancing tumor components were analyzed in 22 glioblastomas and 21 brain metastases on 3T MR imaging using DTI-fractional anisotropy, neurite orientation dispersion and density imaging-orientation dispersion, and diffusion microstructural imaging-micro-fractional anisotropy. Available histopathologic specimens (10 glioblastomas and 9 metastases) were assessed for the presence of axonal structures and scored using 4-level scales for Bielschowsky staining (0: no axonal structures, 1: minimal axonal fragments preserved, 2: decreased axonal density, 3: no axonal loss) and glial fibrillary acid protein expression (0: no glial fibrillary acid protein positivity, 1: limited expression, 2: equivalent to surrounding parenchyma, 3: increased expression). RESULTS: When we compared glioblastomas and metastases, fractional anisotropy was significantly increased and orientation dispersion was decreased in glioblastomas (each P < .001), with a significant shift toward increased glial fibrillary acid protein and Bielschowsky scores. Positive associations of fractional anisotropy and negative associations of orientation dispersion with glial fibrillary acid protein and Bielschowsky scores were revealed, whereas no association between micro-fractional anisotropy with glial fibrillary acid protein and Bielschowsky scores was detected. Receiver operating characteristic curves revealed high predictive values of both fractional anisotropy (area under the curve = 0.8463) and orientation dispersion (area under the curve = 0.8398) regarding the presence of a glioblastoma. CONCLUSIONS: Diffusion imaging fractional anisotropy and orientation dispersion metrics correlated with histopathologic markers of directionality and may serve as imaging biomarkers in contrast-enhancing tumor components.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Diffusion Tensor Imaging/methods , Glial Fibrillary Acidic Protein , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology
6.
Cell Rep Methods ; 2(8): 100260, 2022 08 22.
Article in English | MEDLINE | ID: mdl-36046625

ABSTRACT

Tissue-resident macrophages (TRMs) perform organ-specific functions that are dependent on factors such as hematopoietic origin, local environment, and biological influences. A diverse range of in vitro culture systems have been developed to decipher TRM functions, including bone marrow-derived macrophages (BMDMs), induced pluripotent stem cell (iPSC)-derived TRMs, or immortalized cell lines. However, despite the usefulness of such systems, there are notable limitations. Attempts to culture primary macrophages often require purification of cells and lack a high cell yield and consistent phenotype. Here, we aimed to address these limitations by establishing an organotypic primary cell culture protocol. We obtained long-term monocultures of macrophages derived from distinct organs without prior purification using specific growth factors and tissue normoxic conditions that largely conserved a TRM-like identity in vitro. Thus, this organotypic system offers an ideal screening platform for primary macrophages from different organs that can be used for a wide range of assays and readouts.


Subject(s)
Induced Pluripotent Stem Cells , Microphysiological Systems , Cell Differentiation/genetics , Macrophages , Histiocytes
7.
Front Cell Neurosci ; 16: 862918, 2022.
Article in English | MEDLINE | ID: mdl-36003141

ABSTRACT

Neuropathologically, Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta peptide (Aß) and subsequent formation of the so-called Aß plaques. Along with neuronal loss, previous studies report white matter anomalies and corpus callosum (CC) atrophy in AD patients. Notably, perturbations in the white matter can be observed years before expected disease onset, suggesting that early stages of disease progression play a role in AD-associated loss of myelin integrity. Through seed-induced deposition of Aß, we are able to examine alterations of central nervous system (CNS) integrity during the initial stages of plaque formation. In this study, we investigate the impact of Aß seeding in the CC utilizing various imaging techniques as well as quantitative gene expression analysis and demonstrate that Aß deposits result in an imbalance of glial cells in the CC. We found increased amounts of phagocytic microglia and reactive astrocytes, while oligodendrocyte progenitor cell (OPC) numbers were reduced. Moreover, white matter aberrations adjacent to the Aß seeding were observed together with an overall decline in callosal myelination. This data indicate that the initial stages of plaque formation induce oligodendrocyte dysfunction, which might ultimately lead to myelin loss.

8.
Mol Psychiatry ; 27(10): 4274-4284, 2022 10.
Article in English | MEDLINE | ID: mdl-35869271

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) which ultimately forms plaques. These Aß deposits can be induced in APP transgenic mouse models by prion-like seeding. It has been widely accepted that anosmia and hyposmia occur during the early stages of AD, even before cognitive deficits are present. In order to determine the impact of seed-induced Aß deposits on olfaction, we performed intracerebral injections of seed-competent brain homogenate into the olfactory bulb of young pre-depositing APP transgenic mice. Remarkably, we observed a dramatic olfactory impairment in those mice. Furthermore, the number of newborn neurons as well as the activity of cells in the mitral cell layer was decreased. Notably, exposure to an enriched environment reduced Aß seeding, vivified neurogenesis and most importantly reversed olfactory deficits. Based on our findings, we conclude that altered neuronal function as a result of induced Aß pathology might contribute to olfactory dysfunction in AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Smell , Amyloid beta-Peptides , Mice, Transgenic , Disease Models, Animal , Neurons/pathology , Amyloid beta-Protein Precursor/genetics
9.
Nat Neurosci ; 25(3): 295-305, 2022 03.
Article in English | MEDLINE | ID: mdl-35241804

ABSTRACT

Microglial function declines during aging. The interaction of microglia with the gut microbiota has been well characterized during development and adulthood but not in aging. Here, we compared microglial transcriptomes from young-adult and aged mice housed under germ-free and specific pathogen-free conditions and found that the microbiota influenced aging associated-changes in microglial gene expression. The absence of gut microbiota diminished oxidative stress and ameliorated mitochondrial dysfunction in microglia from the brains of aged mice. Unbiased metabolomic analyses of serum and brain tissue revealed the accumulation of N6-carboxymethyllysine (CML) in the microglia of the aging brain. CML mediated a burst of reactive oxygen species and impeded mitochondrial activity and ATP reservoirs in microglia. We validated the age-dependent rise in CML levels in the sera and brains of humans. Finally, a microbiota-dependent increase in intestinal permeability in aged mice mediated the elevated levels of CML. This study adds insight into how specific features of microglia from aged mice are regulated by the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Microglia , Animals , Lysine/analogs & derivatives , Lysine/metabolism , Mice , Microglia/metabolism , Oxidative Stress
10.
STAR Protoc ; 3(1): 101186, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35243376

ABSTRACT

Most of the protocols to analyze metabolic features of cell populations from different tissues rely on in vitro cell culture conditions. Here, we present a flow-cytometry-based protocol for measuring the respiratory chain function in permeabilized mouse microglia ex vivo. We describe microglial cell isolation, followed by analyzing complex I and II using flow cytometry. This optimized protocol requires a low input of permeabilized cells and can be applied to other ex vivo isolated cells or cells derived from cell cultures. For complete details on the use and execution of this protocol, please refer to Erny et al. (2021).


Subject(s)
Cell Culture Techniques , Microglia , Animals , Cell Separation/methods , Electron Transport , Flow Cytometry/methods , Mice
11.
Cancers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267463

ABSTRACT

Purpose: Glioblastomas (GBM) and brain metastases are often difficult to differentiate in conventional MRI. Diffusion microstructure imaging (DMI) is a novel MR technique that allows the approximation of the distribution of the intra-axonal compartment, the extra-axonal cellular, and the compartment of interstitial/free water within the white matter. We hypothesize that alterations in the T2 hyperintense areas surrounding contrast-enhancing tumor components may be used to differentiate GBM from metastases. Methods: DMI was performed in 19 patients with glioblastomas and 17 with metastatic lesions. DMI metrics were obtained from the T2 hyperintense areas surrounding contrast-enhancing tumor components. Resected brain tissue was assessed in six patients in each group for features of an edema pattern and tumor infiltration in the perilesional interstitium. Results: Within the perimetastatic T2 hyperintensities, we observed a significant increase in free water (p < 0.001) and a decrease in both the intra-axonal (p = 0.006) and extra-axonal compartments (p = 0.024) compared to GBM. Perilesional free water fraction was discriminative regarding the presence of GBM vs. metastasis with a ROC AUC of 0.824. Histologically, features of perilesional edema were present in all assessed metastases and absent or marginal in GBM. Conclusion: Perilesional T2 hyperintensities in brain metastases and GBM differ significantly in DMI-values. The increased free water fraction in brain metastases suits the histopathologically based hypothesis of perimetastatic vasogenic edema, whereas in glioblastomas there is additional tumor infiltration.

12.
Brain Pathol ; 32(3): e13032, 2022 05.
Article in English | MEDLINE | ID: mdl-34713522

ABSTRACT

Several degenerative brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the simultaneous appearance of amyloid-ß (Aß) and α-synuclein (α-syn) pathologies and symptoms that are similar, making it difficult to differentiate between these diseases. Until now, an accurate diagnosis can only be made by postmortem analysis. Furthermore, the role of α-syn in Aß aggregation and the arising characteristic olfactory impairments observed during the progression of these diseases is still not well understood. Therefore, we assessed Aß load in olfactory bulbs of APP-transgenic mice expressing APP695KM670/671NL and PSEN1L166P under the control of the neuron-specific Thy-1 promoter (referred to here as APPPS1) and APPPS1 mice co-expressing SNCAA30P (referred to here as APPPS1 × [A30P]aSYN). Furthermore, the olfactory capacity of these mice was evaluated in the buried food and olfactory avoidance test. Our results demonstrate an age-dependent increase in Aß load in the olfactory bulb of APP-transgenic mice that go along with exacerbated olfactory performance. Our study provides clear evidence that the presence of α-syn significantly diminished the endogenous and seed-induced Aß deposits and significantly ameliorated olfactory dysfunction in APPPS1 × [A30P]aSYN mice.


Subject(s)
Alzheimer Disease , Synucleinopathies , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Olfactory Bulb/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
13.
Nat Neurosci ; 25(1): 20-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34811521

ABSTRACT

Microglia appear activated in the vicinity of amyloid beta (Aß) plaques, but whether microglia contribute to Aß propagation into unaffected brain regions remains unknown. Using transplantation of wild-type (WT) neurons, we show that Aß enters WT grafts, and that this is accompanied by microglia infiltration. Manipulation of microglia function reduced Aß deposition within grafts. Furthermore, in vivo imaging identified microglia as carriers of Aß pathology in previously unaffected tissue. Our data thus argue for a hitherto unexplored mechanism of Aß propagation.


Subject(s)
Amyloid beta-Peptides , Microglia , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Microglia/metabolism , Neurons/metabolism , Plaque, Amyloid/pathology
14.
Neurosurg Rev ; 45(2): 1731-1739, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34914024

ABSTRACT

Histopathological diagnosis is the current standard for the classification of brain and spine tumors. Raman spectroscopy has been reported to allow fast and easy intraoperative tissue analysis. Here, we report data on the intraoperative implementation of a stimulated Raman histology (SRH) as an innovative strategy offering intraoperative near real-time histopathological analysis. A total of 429 SRH images from 108 patients were generated and analyzed by using a Raman imaging system (Invenio Imaging Inc.). We aimed at establishing a dedicated workflow for SRH serving as an intraoperative diagnostic, research, and quality control tool in the neurosurgical operating room (OR). First experiences with this novel imaging modality were reported and analyzed suggesting process optimization regarding tissue collection, preparation, and imaging. The Raman imaging system was rapidly integrated into the surgical workflow of a large neurosurgical center. Within a few minutes of connecting the device, the first high-quality images could be acquired in a "plug-and-play" manner. We did not encounter relevant obstacles and the learning curve was steep. However, certain prerequisites regarding quality and acquisition of tissue samples, data processing and interpretation, and high throughput adaptions must be considered. Intraoperative SRH can easily be integrated into the workflow of neurosurgical tumor resection. Considering few process optimizations that can be implemented rapidly, high-quality images can be obtained near real time. Hence, we propose SRH as a complementary tool for the diagnosis of tumor entity, analysis of tumor infiltration zones, online quality and safety control and as a research tool in the neurosurgical OR.


Subject(s)
Brain Neoplasms , Brain Neoplasms/pathology , Humans , Neurosurgical Procedures/methods , Operating Rooms , Spectrum Analysis, Raman/methods , Workflow
15.
Neurosurg Rev ; 45(2): 1721-1729, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34890000

ABSTRACT

Intraoperative histopathological examinations are routinely performed to provide neurosurgeons with information about the entity of tumor tissue. Here, we quantified the neuropathological interpretability of stimulated Raman histology (SRH) acquired using a Raman laser imaging system in a routine clinical setting without any specialized training or prior experience. Stimulated Raman scattering microscopy was performed on 117 samples of pathological tissue from 73 cases of brain and spine tumor surgeries. A board-certified neuropathologist - novice in the interpretation of SRH - assessed image quality by scoring subjective tumor infiltration and stated a diagnosis based on the SRH images. The diagnostic accuracy was determined by comparison to frozen hematoxylin-eosin (H&E)-stained sections and the ground truth defined as the definitive neuropathological diagnosis. The overall SRH imaging quality was rated high with the detection of tumor cells classified as inconclusive in only 4.2% of all images. The accuracy of neuropathological diagnosis based on SRH images was 87.7% and was non-inferior to the current standard of fast frozen H&E-stained sections (87.3 vs. 88.9%, p = 0.783). We found a substantial diagnostic correlation between SRH-based neuropathological diagnosis and H&E-stained frozen sections (κ = 0.8). The interpretability of intraoperative SRH imaging was demonstrated to be equivalent to the current standard method of H&E-stained frozen sections. Further research using this label-free innovative alternative vs. conventional staining is required to determine to which extent SRH-based intraoperative decision-making can be streamlined in order to facilitate the advancement of surgical neurooncology.


Subject(s)
Brain Neoplasms , Neuropathology , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Humans
16.
Cancers (Basel) ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36612127

ABSTRACT

Although the free water content within the perilesional T2 hyperintense region should differ between glioblastomas (GBM) and brain metastases based on histological differences, the application of classical MR diffusion models has led to inconsistent results regarding the differentiation between these two entities. Whereas diffusion tensor imaging (DTI) considers the voxel as a single compartment, multicompartment approaches such as neurite orientation dispersion and density imaging (NODDI) or the recently introduced diffusion microstructure imaging (DMI) allow for the calculation of the relative proportions of intra- and extra-axonal and also free water compartments in brain tissue. We investigate the potential of water-sensitive DTI, NODDI and DMI metrics to detect differences in free water content of the perilesional T2 hyperintense area between histopathologically confirmed GBM and brain metastases. Respective diffusion metrics most susceptible to alterations in the free water content (MD, V-ISO, V-CSF) were extracted from T2 hyperintense perilesional areas, normalized and compared in 24 patients with GBM and 25 with brain metastases. DTI MD was significantly increased in metastases (p = 0.006) compared to GBM, which was corroborated by an increased DMI V-CSF (p = 0.001), while the NODDI-derived ISO-VF showed only trend level increase in metastases not reaching significance (p = 0.060). In conclusion, diffusion MRI metrics are able to detect subtle differences in the free water content of perilesional T2 hyperintense areas in GBM and metastases, whereas DMI seems to be superior to DTI and NODDI.

17.
Cell Metab ; 33(11): 2260-2276.e7, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731656

ABSTRACT

As tissue macrophages of the central nervous system (CNS), microglia constitute the pivotal immune cells of this organ. Microglial features are strongly dependent on environmental cues such as commensal microbiota. Gut bacteria are known to continuously modulate microglia maturation and function by the production of short-chain fatty acids (SCFAs). However, the precise mechanism of this crosstalk is unknown. Here we determined that the immature phenotype of microglia from germ-free (GF) mice is epigenetically imprinted by H3K4me3 and H3K9ac on metabolic genes associated with substantial functional alterations including increased mitochondrial mass and specific respiratory chain dysfunctions. We identified acetate as the essential microbiome-derived SCFA driving microglia maturation and regulating the homeostatic metabolic state, and further showed that it is able to modulate microglial phagocytosis and disease progression during neurodegeneration. These findings indicate that acetate is an essential bacteria-derived molecule driving metabolic pathways and functions of microglia during health and perturbation.


Subject(s)
Microbiota , Acetates/pharmacology , Animals , Brain/metabolism , Fatty Acids, Volatile/metabolism , Immune System/metabolism , Mice , Microbiota/physiology
18.
EMBO J ; 40(23): e108605, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34622466

ABSTRACT

The immune cells of the central nervous system (CNS) comprise parenchymal microglia and at the CNS border regions meningeal, perivascular, and choroid plexus macrophages (collectively called CNS-associated macrophages, CAMs). While previous work has shown that microglial properties depend on environmental signals from the commensal microbiota, the effects of microbiota on CAMs are unknown. By combining several microbiota manipulation approaches, genetic mouse models, and single-cell RNA-sequencing, we have characterized CNS myeloid cell composition and function. Under steady-state conditions, the transcriptional profiles and numbers of choroid plexus macrophages were found to be tightly regulated by complex microbiota. In contrast, perivascular and meningeal macrophages were affected to a lesser extent. An acute perturbation through viral infection evoked an attenuated immune response of all CAMs in germ-free mice. We further assessed CAMs in a more chronic pathological state in 5xFAD mice, a model for Alzheimer's disease, and found enhanced amyloid beta uptake exclusively by perivascular macrophages in germ-free 5xFAD mice. Our results aid the understanding of distinct microbiota-CNS macrophage interactions during homeostasis and disease, which could potentially be targeted therapeutically.


Subject(s)
Alzheimer Disease/immunology , Bacteria/growth & development , Central Nervous System/immunology , Homeostasis , Macrophages/immunology , Myeloid Cells/immunology , Alzheimer Disease/genetics , Alzheimer Disease/microbiology , Alzheimer Disease/pathology , Animals , Bacteria/classification , Bacteria/metabolism , Central Nervous System/metabolism , Central Nervous System/microbiology , Central Nervous System/pathology , Female , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Microbiota , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Myeloid Cells/pathology , Transcriptome
19.
Glia ; 69(8): 1932-1949, 2021 08.
Article in English | MEDLINE | ID: mdl-33811399

ABSTRACT

Evidence is growing that microglia adopt different roles than monocyte-derived macrophages (MDM) during CNS injury. However, knowledge about their function in the pathogenesis of neuroinfections is only rudimentary. Cattle are frequently affected by neuroinfections that are either zoonotic or related to diseases in humans, and, hence, studies of bovine neuroinfections as a natural disease model may generate fundamental data on their pathogenesis potentially translatable to humans. We investigated the transcriptomic landscape and lineage markers of bovine microglia and MDM. Although bovine microglia expressed most microglial signature genes known from humans and mice, they exhibited a species-specific transcriptomic profile, including strikingly low expression of TMEM119 and enrichment of the two scavenger receptors MEGF10 and LY75. P2RY12 was amongst the most enriched genes in bovine microglia, and antibodies against P2RY12 labeled specifically resting microglia, but also reactive microglia within neuroinfection foci in-situ. On the other hand, F13A1 was amongst the most enriched genes in bovine monocytes and MDM and, additionally, the encoded protein was expressed in-situ in monocytes and MDM in the inflamed brain but not in microglia, making it a promising marker for infiltrating MDM in the brain. In culture, primary bovine microglia downregulated signature genes, expressed markers of activation, and converged their transcriptome to MDM. However, they retained several microglia signature genes that clearly distinguished them from bovine MDM, making them a promising in-vitro tool to study mechanisms of microglia-pathogen interactions.


Subject(s)
Microglia , Transcriptome , Animals , Brain/metabolism , Cattle , Macrophages/metabolism , Membrane Proteins/metabolism , Mice , Microglia/metabolism , Monocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...