Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ScientificWorldJournal ; 2014: 524367, 2014.
Article in English | MEDLINE | ID: mdl-24757424

ABSTRACT

We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.


Subject(s)
Algorithms , Electroencephalography/methods , Mathematical Computing , Computer Simulation
2.
Comput Methods Programs Biomed ; 97(1): 39-47, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19523710

ABSTRACT

This paper presents a preprocessing technique for improving the classification of electroencephalographic (EEG) data in brain-computer interfaces (BCI) for the case of realistic measuring conditions, such as low signal-to-noise ratio (SNR), reduced number of measuring electrodes, and reduced amount of data used to train the classifier. The proposed method is based on a linear minimum mean squared error (LMMSE) spatial filter specifically designed to improve the SNR of the signals before being classified. The design parameters of the spatial filter are obtained through an optimized version of Fisher's linear discriminant (FLD) whose area under the receiver operating characteristics (ROC) curve is maximized. The combination of the spatial filter and the optimized FLD increases the SNR and changes the spatial distribution of the measured signals. As a result, the signals can be more easily discriminated by means of a simple sign detector or threshold-based classifier. A series of experiments on simulated EEG data compare the performance of the proposed classification scheme to the performance of the Mahalanobis distance-based classifier, which is widely used in BCI systems. Numerical results show that the proposed preprocessing technique enhances the classifier's performance even for low SNR conditions and few measurements, while the Mahalanobis classifier is not reliable under such realistic operating conditions. Furthermore, real EEG data from a self-paced key typing experiment is used to demonstrate the applicability of the preprocessing technique. The proposed method has the potential of improving the efficiency of real-life BCI systems, as well as reducing the computational complexity associated with their implementation.


Subject(s)
Computer Simulation , Electroencephalography/classification , Linear Models , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Brain Mapping/methods , Data Interpretation, Statistical , Humans , ROC Curve , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL