Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
JCO Glob Oncol ; 10: e2300216, 2024 May.
Article in English | MEDLINE | ID: mdl-38723219

ABSTRACT

PURPOSE: Breast cancer mortality rates in Latin America (LA) are higher than those in the United States, possibly because of advanced disease presentation, health care disparities, or unfavorable molecular subtypes. The Latin American Cancer Research Network was established to address these challenges and to promote collaborative clinical research. The Molecular Profiling of Breast Cancer Study (MPBCS) aimed to evaluate the clinical characteristics and treatment outcomes of LA participants with locally advanced breast cancer (LABC). PATIENTS AND METHODS: The MPBCS enrolled 1,449 participants from Argentina, Brazil, Chile, Mexico, and Uruguay. Through harmonized procedures and quality assurance measures, this study evaluated clinicopathologic characteristics, neoadjuvant chemotherapy response, and survival outcomes according to residual cancer burden (RCB) and the type of surgery. RESULTS: Overall, 711 and 480 participants in the primary surgery and neoadjuvant arms, respectively, completed the 5-year follow-up period. Overall survival was independently associated with RCB (worse survival for RCBIII-adjusted hazard ratio, 8.19, P < .001, and RCBII [adjusted hazard ratio, 3.69, P < .008] compared with RCB0 [pathologic complete response or pCR]) and type of surgery (worse survival in mastectomy than in breast-conserving surgery [BCS], adjusted hazard ratio, 2.97, P = .001). The hormone receptor-negative-human epidermal growth factor receptor 2-positive group had the highest proportion of pCR (48.9%). The analysis of the ASCO Quality Oncology Practice Initiative breast module revealed high compliance with pathologic standards but lower adherence to treatment administration standards. Notably, compliance with trastuzumab administration varied widely among countries (33.3%-88.7%). CONCLUSION: In LABC, we demonstrated the survival benefit of BCS and the prognostic effect of the response to available neoadjuvant treatments despite an important variability in access to key treatments. The MPBCS represents a significant step forward in understanding the real-world implementation of oncologic procedures in LA.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Humans , Breast Neoplasms/therapy , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Female , Middle Aged , Latin America/epidemiology , Adult , Aged
2.
Front Cell Infect Microbiol ; 14: 1293782, 2024.
Article in English | MEDLINE | ID: mdl-38357446

ABSTRACT

Infectious diseases have consistently served as pivotal influences on numerous civilizations, inducing morbidity, mortality, and consequently redirecting the course of history. Their impact extends far beyond the acute phase, characterized by the majority of symptom presentations, to a multitude of adverse events and sequelae that follow viral, parasitic, fungal, or bacterial infections. In this context, myriad sequelae related to various infectious diseases have been identified, spanning short to long-term durations. Although these sequelae are known to affect thousands of individuals individually, a comprehensive evaluation of all potential long-term effects of infectious diseases has yet to be undertaken. We present a comprehensive literature review delineating the primary sequelae attributable to major infectious diseases, categorized by systems, symptoms, and duration. This compilation serves as a crucial resource, illuminating the long-term ramifications of infectious diseases for healthcare professionals worldwide. Moreover, this review highlights the substantial burden that these sequelae impose on global health and economies, a facet often overshadowed by the predominant focus on the acute phase. Patients are frequently discharged following the resolution of the acute phase, with minimal long-term follow-up to comprehend and address potential sequelae. This emphasizes the pressing need for sustained vigilance, thorough patient monitoring, strategic health management, and rigorous research to understand and mitigate the lasting economic and health impacts of infectious diseases more fully.


Subject(s)
Bacterial Infections , Communicable Diseases , Humans , Communicable Diseases/complications , Causality , Risk Factors
3.
Animals (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835752

ABSTRACT

Mammary cancer is the most frequently diagnosed neoplasia in women and non-spayed female dogs and is one of the leading causes of death in both species. Canines develop spontaneous mammary tumors that share a significant number of biological, clinical, pathological and molecular characteristics with human breast cancers. This review provides a detailed description of the histological, molecular and clinical aspects of mammary cancer in canines; it discusses risk factors and currently available diagnostic and treatment options, as well as remaining challenges and unanswered questions. The incidence of mammary tumors is highly variable and is impacted by biological, pathological, cultural and socioeconomic factors, including hormonal status, breed, advanced age, obesity and diet. Diagnosis is mainly based on histopathology, although several efforts have been made to establish a molecular classification of canine mammary tumors to widen the spectrum of treatment options, which today rely heavily on surgical removal of tumors. Lastly, standardization of clinical study protocols, development of canine-specific biological tools, establishment of adequate dog-specific disease biomarkers and identification of targets for the development of new therapies that could improve survival and have less adverse effects than chemotherapy are among the remaining challenges.

4.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298970

ABSTRACT

Biological properties of Sonoran propolis (SP) are influenced by harvest time. Caborca propolis showed cellular protective capacity against reactive oxygen species, which might be implicated in anti-inflammatory effects. However, the anti-inflammatory activity of SP has not been investigated so far. This study investigated the anti-inflammatory activity of previously characterized seasonal SP extracts (SPE) and some of their main constituents (SPC). The anti-inflammatory activity of SPE and SPC was evaluated by measuring nitric oxide (NO) production, protein denaturation inhibition, heat-induced hemolysis inhibition, and hypotonicity-induced hemolysis inhibition. SPE from spring, autumn, and winter showed a higher cytotoxic effect on RAW 264.7 cells (IC50: 26.6 to 30.2 µg/mL) compared with summer extract (IC50: 49.4 µg/mL). SPE from spring reduced the NO secretion to basal levels at the lowest concentration tested (5 µg/mL). SPE inhibited the protein denaturation by 79% to 100%, and autumn showed the highest inhibitory activity. SPE stabilized erythrocyte membrane against heat-induced and hypotonicity-induced hemolysis in a concentration-dependent manner. Results indicate that the flavonoids chrysin, galangin, and pinocembrin could contribute to the anti-inflammatory activity of SPE and that the harvest time influences such a property. This study presents evidence of SPE pharmacological potential and some of their constituents.


Subject(s)
Propolis , Humans , Propolis/pharmacology , Hemolysis , Seasons , Nitric Oxide , Anti-Inflammatory Agents/pharmacology
5.
Curr Top Med Chem ; 23(18): 1753-1764, 2023.
Article in English | MEDLINE | ID: mdl-36959133

ABSTRACT

Propolis is a beehive product with great pharmacological potential, including antineoplastic activity. OBJECTIVES: The aim of this study is to provide an actual understanding of the existent scientific information regarding the antiproliferative effect of propolis, proposed mechanisms of action, and challenges to meet. METHODS: An assessment of the scientific literature was attained using the PubMed and SciFinder platforms. Research papers, clinical trials, and reviews published between the years 2000 - 2021, were considered. The words "anticancer", "antitumor", "antiproliferative" and "propolis" were used in the search criteria. CONCLUSION: A summary of several antiproliferative activities of different types of propolis is exposed. The potential health benefits of propolis are discussed. The variable plant origin of propolis partially accounts for its anti-cancer activities. Even when some mechanisms of action of propolis have been proposed, much of the genesis of how this effect is produced is yet to be answered, including several molecular mechanisms in different biological systems.


Subject(s)
Neoplasms , Humans , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Propolis/chemistry , Propolis/pharmacology , Propolis/therapeutic use
6.
Rev. argent. microbiol ; Rev. argent. microbiol;54(4): 121-130, dic. 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1422973

ABSTRACT

Abstract Our group isolated Salmonella enterica serovar Albany from food and feces of wildcaptive carnivores in a zoo from northwestern Mexico. This serovar was also associated with thedeath of an ocelot (Leopardus pardalis) in the same zoo. Another group associated S. Albanywith the death of a human patient. It is due to this zoonotic potential that the in vivo study of thehost-S. Albany relationship is critical. The recombinant S. Albany-Ovalbumin (rSAO) strain wasused to analyze a murine oral infection and its specific cytotoxic T lymphocyte (CTL) response.Our results have shown for the first time that rSAO establishes a systemic infection and evokesepitope-specific lysis with a Th1-like cytokine profile in vivo.


Resumen Salmonella entérica serovar Albany fue aislada por nuestro grupo de investigación de alimentos contaminados y de heces de animales carnívoros en cautiverio en un zoológico del noroeste de México; posteriormente, se logró asociar a este serovar con la muerte de un ocelote (Leopardus pardalis), dentro de este mismo zoológico. Otro grupo de investigación asoció a este serovar con la muerte de un paciente. Es debido a este potencial zoonótico que el estudio in vivo de la relación hospedero-S. Albany es crítico. La cepa recombinante S. Albany-Ovoalbúmina (rSAO) fue utilizada para analizar la infección múrida, al igual que la respuesta inmune celular citotóxica específica. Nuestros resultados demuestran, por primera vez, que rSAO establece una infección sistémica y evoca lisis epítopo-específica con un perfil de citocinas tipo Th1 in vivo.

7.
An. Fac. Cienc. Méd. (Asunción) ; 55(3): 110-116, 20221115.
Article in Spanish | LILACS | ID: biblio-1401561

ABSTRACT

La rinoplastia cerrada es una cirugía que se realiza con el fin de cambiar la estructura de la nariz, con fines cosméticos o reparadores. Se busca realizar pequeños retoques que logren un aspecto natural. Es una de las cirugías estéticas más complejas y representa un reto para el cirujano, pues combina técnica con sensibilidad y ciencia con arte. En este artículo describimos esta técnica con el objetivo de demostrar su eficacia y vigencia, sin compararla con la rinoplastia abierta, pues no es motivo de discusión en este trabajo, por lo que no podemos asegurar que una opción es mejor o peor que la otra. Lo más conveniente es que los cirujanos estén capacitados para realizar cualquiera de estas. Con la rinoplastia cerrada se logran resultados que llenan las expectativas tanto de los pacientes, como de los cirujanos y el post operatorio es breve y prácticamente sin incidentes. Es una propuesta que tiene indicaciones precisas en el marco de una rinoplastia preservadora, que es tendencia a nivel mundial en la actualidad.


Closed rhinoplasty is a surgery that is performed in order to change the structure of the nose, for cosmetic or restorative purposes. It seeks to make small touches that achieve a natural appearance. It is one of the most complex cosmetic surgeries and represents a challenge for the surgeon, as it combines technique with sensitivity and science with art. In this article, we describe this technique in order to demonstrate its effectiveness and validity, without comparing it with open rhinoplasty, since it is not a matter of discussion in this work, so we cannot guarantee that one option is better or worse than the other. It is best if surgeons are trained to perform any of these. With closed rhinoplasty, results are achieved that meet the expectations of both patients and surgeons, and the postoperative period is brief and practically uneventful. It is a proposal that has precise indications within the framework of conservative rhinoplasty, which is currently a worldwide trend.


Subject(s)
Rhinoplasty , Art , Science , Effectiveness , Nose
8.
Rev Argent Microbiol ; 54(4): 282-287, 2022.
Article in English | MEDLINE | ID: mdl-35760652

ABSTRACT

Our group isolated Salmonella enterica serovar Albany from food and feces of wild captive carnivores in a zoo from northwestern Mexico. This serovar was also associated with the death of an ocelot (Leopardus pardalis) in the same zoo. Another group associated S. Albany with the death of a human patient. It is due to this zoonotic potential that the in vivo study of the host-S. Albany relationship is critical. The recombinant S. Albany-Ovalbumin (rSAO) strain was used to analyze a murine oral infection and its specific cytotoxic T lymphocyte (CTL) response. Our results have shown for the first time that rSAO establishes a systemic infection and evokes epitope-specific lysis with a Th1-like cytokine profile in vivo.


Subject(s)
Salmonella Infections, Animal , Salmonella enterica , Humans , Mice , Animals , T-Lymphocytes, Cytotoxic , Ovalbumin , Mice, Inbred C57BL , Serogroup , Immunity
9.
Front Oncol ; 12: 835626, 2022.
Article in English | MEDLINE | ID: mdl-35433488

ABSTRACT

Purposes: Most molecular-based published studies on breast cancer do not adequately represent the unique and diverse genetic admixture of the Latin American population. Searching for similarities and differences in molecular pathways associated with these tumors and evaluating its impact on prognosis may help to select better therapeutic approaches. Patients and Methods: We collected clinical, pathological, and transcriptomic data of a multi-country Latin American cohort of 1,071 stage II-III breast cancer patients of the Molecular Profile of Breast Cancer Study (MPBCS) cohort. The 5-year prognostic ability of intrinsic (transcriptomic-based) PAM50 and immunohistochemical classifications, both at the cancer-specific (OSC) and disease-free survival (DFS) stages, was compared. Pathway analyses (GSEA, GSVA and MetaCore) were performed to explore differences among intrinsic subtypes. Results: PAM50 classification of the MPBCS cohort defined 42·6% of tumors as LumA, 21·3% as LumB, 13·3% as HER2E and 16·6% as Basal. Both OSC and DFS for LumA tumors were significantly better than for other subtypes, while Basal tumors had the worst prognosis. While the prognostic power of traditional subtypes calculated with hormone receptors (HR), HER2 and Ki67 determinations showed an acceptable performance, PAM50-derived risk of recurrence best discriminated low, intermediate and high-risk groups. Transcriptomic pathway analysis showed high proliferation (i.e. cell cycle control and DNA damage repair) associated with LumB, HER2E and Basal tumors, and a strong dependency on the estrogen pathway for LumA. Terms related to both innate and adaptive immune responses were seen predominantly upregulated in Basal tumors, and, to a lesser extent, in HER2E, with respect to LumA and B tumors. Conclusions: This is the first study that assesses molecular features at the transcriptomic level in a multicountry Latin American breast cancer patient cohort. Hormone-related and proliferation pathways that predominate in PAM50 and other breast cancer molecular classifications are also the main tumor-driving mechanisms in this cohort and have prognostic power. The immune-related features seen in the most aggressive subtypes may pave the way for therapeutic approaches not yet disseminated in Latin America. Clinical Trial Registration: ClinicalTrials.gov (Identifier: NCT02326857).

10.
Front Cell Infect Microbiol ; 11: 769446, 2021.
Article in English | MEDLINE | ID: mdl-34778111

ABSTRACT

Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the Giardia lamblia parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host-Giardia interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of Giardia immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of Giardia experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of G. lamblia. We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-Ak and I-Ad) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of Giardia. To our knowledge, this is the first in silico study that analyze immunogenic proteins of G. lamblia by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the Giardia immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Giardiasis/prevention & control , Mice , Peptides , T-Lymphocytes
11.
Front Physiol ; 12: 669455, 2021.
Article in English | MEDLINE | ID: mdl-34149450

ABSTRACT

The storage lesions and the irradiation of blood cellular components for medical procedures in blood banks are events that may induce nanochanges in the membrane of red blood cells (RBCs). Alterations, such as the formation of pores and vesicles, reduce flexibility and compromise the overall erythrocyte integrity. This review discusses the alterations on erythrocytic lipid membrane bilayer through their characterization by confocal scanning microscopy, Raman, scanning electron microscopy, and atomic force microscopy techniques. The interrelated experimental results may address and shed light on the correlation of biomechanical and biochemical transformations induced in the membrane and cytoskeleton of stored and gamma-irradiated RBC. To highlight the main advantages of combining these experimental techniques simultaneously or sequentially, we discuss how those outcomes observed at micro- and nanoscale cell levels are useful as biomarkers of cell aging and storage damage.

12.
PeerJ ; 9: e10506, 2021.
Article in English | MEDLINE | ID: mdl-33505784

ABSTRACT

Vibrio parahaemolyticus (Vp), a typical microorganism inhabiting marine ecosystems, uses pathogenic virulence molecules such as hemolysins to cause bacterial infections of both human and marine animals. The thermolabile hemolysin VpTLH lyses human erythrocytes by a phospholipase B/A2 enzymatic activity in egg-yolk lecithin. However, few studies have been characterized the biochemical properties and the use of VpTLH as a molecular target for natural compounds as an alternative to control Vp infection. Here, we evaluated the biochemical and inhibition parameters of the recombinant VpTLH using enzymatic and hemolytic assays and determined the molecular interactions by in silico docking analysis. The highest enzymatic activity was at pH 8 and 50 °C, and it was inactivated by 20 min at 60 °C with Tm = 50.9 °C. Additionally, the flavonoids quercetin, epigallocatechin gallate, and morin inhibited the VpTLH activity with IC50 values of 4.5 µM, 6.3 µM, and 9.9 µM, respectively; while phenolics acids were not effective inhibitors for this enzyme. Boltzmann and Arrhenius equation analysis indicate that VpTLH is a thermolabile enzyme. The inhibition of both enzymatic and hemolytic activities by flavonoids agrees with molecular docking, suggesting that flavonoids could interact with the active site's amino acids. Future research is necessary to evaluate the antibacterial activity of flavonoids against Vp in vivo.

13.
Antioxidants (Basel) ; 9(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348680

ABSTRACT

The main chemical composition and pharmacological potential of propolis from arid and semi-arid regions of the Sonoran Desert have been previously reported. Caborca propolis (CP), from an arid zone of the Sonoran Desert, has shown a polyphenolic profile that suggests a mixed plant origin, presenting poplar-type markers, as well as a 6-methoxylated flavonoid, xanthomicrol, characteristic of Asteraceae plants. In addition, CP has shown significant antioxidant properties and antiproliferative activity on cancer cells. In this study, we analyzed the influence of collection time on the chemical constitution, antiproliferative activity and protective capacity of CP against reactive oxygen species (ROS), by using HPLC-UV-diode array detection (DAD) analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-Dimethyltetrazoliumbromide (MTT) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays, as well as cellular antioxidant activity (CAA) assay on murine B-cell lymphoma M12.C3.F6 cells. HPLC-UV-DAD analyses of seasonally collected CP (one-year period) revealed quantitative differences among the most abundant CP constituents: pinocembrin, galangin, chrysin and pinobanksin-3-O-acetate. Though all seasonal samples of CP induced an antiproliferative effect in M12.C3.F6 cells, CP from autumn showed the highest inhibitory activity (IC50: 5.9 ± 0.6 µg/mL). The DPPH assay pointed out that CP collected in autumn presented the highest antioxidant potential (IC50: 58.8 ± 6.7 µg/mL), followed by winter (65.7 ± 12.2 µg/mL) and spring (67.0 ± 7.5 µg/mL); meanwhile, the summer sample showed a lesser antioxidant capacity (IC50: 98.7 ± 2.5 µg/mL). The CAA assay demonstrated that CP induced a significant protective effect against ROS production elicited by H2O2 in M12.C3.F6 cells. Pretreatment of M12.C3.F6 cells with CP from spring and autumn (25 and 50 µg/mL for 1 h) showed the highest reduction in intracellular ROS induced by H2O2 (1 and 5 mM). These results indicate that the antiproliferative effect and cellular antioxidant activity of CP are modulated by quantitative fluctuations in its polyphenolic profile due to its collection time.

14.
Parasite Immunol ; 42(10): e12767, 2020 10.
Article in English | MEDLINE | ID: mdl-32594543

ABSTRACT

AIMS: Giardia lamblia is a protozoan parasite that causes giardiasis, one of the most common worldwide gastrointestinal diseases. For rational development of a Giardia vaccine, increasing our understanding of the host-Giardia interaction is crucial. In this study, we analysed the immunogenicity and antigenicity of two G lamblia strain variants [GS and GS-5G8 (+)], which express different levels of the variant-specific surface protein (VSP) 5G8 and also analysed the intestinal histological changes associated with Giardia infection. METHODS AND RESULTS: We evaluated the antibody responses induced by G lamblia strains in infected, reinfected and immunized C3H/HeJ mice using ELISA, flow cytometry, Western blotting and histological analysis. Our results showed that G lamblia GS-5G8 (+) was more immunogenic and antigenic than the GS strain. The antibody response against the GS-5G8 (+) strain primarily recognized 5G8 protein. Serum antibody from infected and reinfected mice exhibited specific agglutination of trophozoites in vitro. GS-5G8 (+)-infected mice showed higher CD19+ infiltrating cell levels compared to GS-infected animals. CONCLUSION: G lamblia strains with different expression levels of an immunogenic antigen (VSP 5G8) induce differential antibody responses. A better understanding of the immunogenic proteins of G lamblia will contribute to the rational development of an effective vaccine against this parasitic disease.


Subject(s)
Cytokines/immunology , Giardia lamblia/immunology , Giardiasis/immunology , Protozoan Proteins/immunology , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Giardia lamblia/metabolism , Intestines/immunology , Intestines/parasitology , Mice , Mice, Inbred C3H , Protozoan Proteins/metabolism
15.
Steroids ; 157: 108597, 2020 05.
Article in English | MEDLINE | ID: mdl-32068079

ABSTRACT

Chemical studies on Ibervillea sonorae (S. Watson) Greene root led to isolation and chemical characterization of diverse cucurbitacin triterpenoid compounds such as kinoin A, B, C, and their glucosides. In previous studies, we demonstrated that kinoin A inhibits the cell proliferation on diverse cell line and induce apoptosis in HeLa cells. Therefore, the study of the isolated compounds from the extracts continued to be necessary. The objective of the present work was to isolate and chemically characterize the active compounds of the methanolic extract of the roots of I. sonorae and to evaluate their antiproliferative activity and induction of apoptosis. By chromatographic column separation and using NMR spectroscopy experiments, cucurbitacin IIb (CIIb), known as 23,24-dihydrocucurbitacin F or hemslecin B, was isolated and identified for the first time as a chemical constituent of the crude methanolic extract of this plant. The antiproliferative activity of CIIb was evaluated by MTT assay, and the apoptosis induction capacity was monitored by annexin V-FITC/propidium iodide using flow cytometry. CIIb showed a pronounced effect on the proliferation of HeLa and A549 tumor cells, with IC50 of 7.3 and 7.8 µM, respectively, but was less effective against L929 non-cancerous murine cell line. Apoptosis induction capacity of CIIb on HeLa and A549 was monitored by annexin V-FITC/propidium iodide using flow cytometry. Exposure of HeLa and A549 with CIIb (8 µM) for 24 h increased 56.9 and 52.3% respectively of the total apoptosis compared to the negative control (p < 0.005). CIIb, isolated for the first time from I. sonorae, showed antiproliferative activity against HeLa and A549 cell lines by inducing cell death by apoptosis.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cucurbitacins/pharmacology , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Cells, Cultured , Cucurbitacins/chemistry , Cucurbitacins/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Mice , Molecular Conformation , RAW 264.7 Cells , Structure-Activity Relationship
16.
Naturwissenschaften ; 106(5-6): 25, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31069518

ABSTRACT

The main chemical composition of Sonoran propolis (SP), as well as its antiproliferative activity on cancer cells through apoptosis induction, has been reported. The chemical constitution of SP remained qualitatively similar throughout the year, whereas the antiproliferative effect on cancer cells exhibited significant differences amongst seasonal samples. The main goal of this study was to provide phytochemical and pharmacological evidence for the botanical source of SP and its antiproliferative constituents. A chemical comparative analysis of SP and plant resins of species found in the surrounding areas of the beehives was carried out by HPLC-UV-DAD, as well as by 1H NMR experiments. The antiproliferative activity on cancerous (M12.C3.F6, HeLa, A549, PC-3) and normal cell lines (L-929; ARPE-19) was assessed through MTT assays. Here, the main polyphenolic profile of SP resulted to be qualitatively similar to Populus fremontii resins (PFR). However, the antiproliferative activity of PFR on cancer cells did not consistently match that exhibited by SP throughout the year. Additionally, SP induced morphological modifications on treated cells characterised by elongation, similar to those induced by colchicine, and different to those observed with PFR treatment. These results suggest that P. fremontii is the main botanical source of SP along the year. Nevertheless, the antiproliferative constituents of SP that induce that characteristic morphological elongation on treated cells are not obtained from PFR. Moreover, the presence of kaempferol-3-methyl-ether in SP could point Ambrosia ambrosioides as a secondary plant source. In conclusion, SP is a bioactive poplar-type propolis from semi-arid zones, in which chemical compounds derived from other semi-arid plant sources than poplar contribute to its antiproliferative activity.


Subject(s)
Propolis/chemistry , Propolis/pharmacology , A549 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Desert Climate , HeLa Cells , Humans , Populus/chemistry
17.
Pharmacognosy Res ; 10(1): 55-59, 2018.
Article in English | MEDLINE | ID: mdl-29568188

ABSTRACT

BACKGROUND: Ziziphus obtusifolia is a spiny shrub found in Northwest Mexico desert, with traditional medicinal use to treat several diseases including cancer. OBJECTIVE: The aims of the present study were to evaluate the antiproliferative and apoptotic activities of the aerial parts of this plant. MATERIALS AND METHODS: The methanol extract and its fractions were prepared using several solvents. The antiproliferative activity was evaluated by the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium) (MTT) assay on HeLa, A549, RAW 264.7, M12.C3.F6, and L-929 cell lines, and the apoptotic activity using Annexin V and (5,50,6,60-tetra-chloro-1,10,3,30-tetra-ethylbenzimidazol-carbocyanine iodide) staining. The most active fraction was further separated by column chromatography. RESULTS: The most active fraction was hexane with an IC50 of 90.4 µg/mL against RAW 264.7, 94 µg/mL against M12.C3.F6, 165.5 µg/mL against HeLa and 187.7 µg/mL against A549 cell lines. In apoptotic activity assays the methanol extract and its n-hexane fraction were found to induce mitochondrial depolarization in HeLa cells (83 and 87% respectively), and both induced the externalization of the phosphatidylserine increasing the percentage of cells in early apoptosis from 1.4% in untreated control cells, to 1.9% and 3.5% for methanol extract and n-hexane fraction-treated cells, respectively, statistically different for the total percentage of apoptotic cells (P < 0.05). CONCLUSIONS: These results show that Z. obtusifolia has antiproliferative and apoptotic activities in vitro and confirms its use in traditional medicine. SUMMARY: The methanol extract and its fractions using several solvents were evaluated in the antiproliferative activity by the MTT assay on HeLa, A549, RAW 264.7, M12.C3.F6, and L-929 cell lines, and the apoptotic activity using Annexin V and (5,50,6,60-tetra-chloro-1,10,3,30-tetra-ethylbenzimidazol-carbocyanine iodide) staining. The most active fraction against cell lines was hexane. In apoptotic activity assays, the methanol extract and its n-hexane fraction were found to induce mitochondrial depolarization. This results we showed that Ziziphus obtusifolia has antiproliferative and apoptotic activities in vitro.Abbreviations Used: DMEM: Dulbecco's modified eagle's medium, DMSO: Dimethyl sulfoxide, MTT: (3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium), JC-1: (5,50,6,60-tetra-chloro-1,10,3,30-tetra-ethylbenzimidazol-carbocyanine iodide), FBS: Fetal bovine serum, CAPE: Caffeic acid phenethyl ester, PBS: Phosphate-buffered saline.

18.
J Ethnopharmacol ; 206: 92-100, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28506901

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: The evaluation of the antimycobacterial activity of extracts of medicinal plants used by Mayos against tuberculosis and respiratory problems, allowed the identification of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC (Fabaceae) as the best candidate to find new antimycobacterial compounds. AIM OF THE STUDY: To isolate and characterize the compounds of R. precatoria responsible for the inhibitory and bactericidal activity against Mycobacterium tuberculosis H37Rv and Mycobacterium smegmatis ATCC 700084. To determine antimycobacterial synergistic effect of pure compounds and their selectivity index towards Vero cells. MATERIALS AND METHODS: A total of six flavonoids were purified by silica gel column chromatography. Structural elucidation of the isolated compounds was achieved by using 1D and 2D NMR spectroscopy techniques. The configuration at the C-3 chiral center was established by quantum mechanical calculation of the electronic circular dichroism (ECD) spectrum. In vitro inhibitory and bactericidal activity against M. tuberculosis and M. smegmatis were determined with the redox indicator Alamar Blue (resazurin). Synergy was determined by X/Y quotient. Cytotoxicity was measured by MTT assay. RESULTS: The isolated compounds were identified as precatorin A (1), precatorin B (2), precatorin C (3), lupinifolin (4), cajanone (5) and lupinifolinol (6). Compounds 1-3 are new. Compounds 1 to 5 inhibited the growth of M. tuberculosis (MIC ≥31.25µg/mL); compounds 1, 2, 4 and 5 killed the bacteria (MBC ≥31.25µg/mL) and also inhibited M. smegmatis (MIC ≥125µg/mL), while 1 and 4 also resulted bactericidal (MBC ≥125µg/mL). Compounds 4 and 5 presented synergistic effect (X/Y quotient value <0.5) at a concentration of 1/2 MIC of each compound in the combination. Cytotoxicity in murine macrophages (RAW 264.7 cells) gave IC50 values of 13.3-46.98µM, for compounds 1-5. CONCLUSIONS: In this work we isolated two new isoflavanones (1 and 2), and one new isoflavone (3) with a weak antimycobacterial activity. The (3R) absolute configuration was assigned to 1 by computational analysis of its ECD spectrum and to 2 and 5 by similarity of their ECD spectra with that of 1. We are also reporting by first time, activity against virulent strain of M. tuberculosis for compounds 4 and 5 and their antimycobacterial synergistic effect.


Subject(s)
Fabaceae/chemistry , Flavonoids/pharmacology , Mycobacterium smegmatis/drug effects , Mycobacterium tuberculosis/drug effects , Plant Extracts/pharmacology , Animals , Chlorocebus aethiops , Microbial Sensitivity Tests , Vero Cells
19.
Immunobiology ; 222(8-9): 884-891, 2017 08.
Article in English | MEDLINE | ID: mdl-28552268

ABSTRACT

Giardia lamblia is a protozoan parasite that causes one of the most common gastrointestinal diseases worldwide. To eliminate the parasite from the host intestine, it is necessary the activation of B-cell and T-cell dependent mechanisms. The knowledge about Giardia antigens that can stimulate the host immune response is limited. Recently, it has been described the Binding Immunoglobulin Protein (BIP) of G. lamblia (71kDa) as a potential immunogen. Additionally, our group has identified a highly immunogenic antigen (5G8 protein) of G. lamblia with a relative molecular mass of approximately 70kDa. There is some evidence suggesting that the 5G8 protein may activate both humoral and cellular immune responses. Based on these observations and preliminary mass spectrometry analyses, we hypothesized that the antigen 5G8 could be the BIP protein. In the present study, we characterize immunochemically the BIP protein of Giardia. Flow cytometric assays and western blotting were used to determine the expression profile of BIP and 5G8 antigens in Giardia trophozoites. The differences in expression profile indicated that BIP and 5G8 are not the same molecule. ELISA and Western blotting assays revealed that BIP protein was recognized by antibodies produced during G. lamblia infection in C3H/HeN mice. MTT assays did not reveal the activation of cellular immune response induced by BIP protein in vitro. In addition, we identified the potential B-cell and T-cell epitopes of G. lamblia BIP protein. This molecule is a conserved protein among Giardia strains and other pathogens. The complete immunological characterization of this antigen will contribute to a better understanding of the host-parasite interactions in Giardia infection.


Subject(s)
Antigens, Protozoan/immunology , Giardia lamblia/immunology , Giardiasis/immunology , HSP70 Heat-Shock Proteins/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Female , HSP70 Heat-Shock Proteins/genetics , Mice, Inbred C3H , Protozoan Proteins/genetics , Recombinant Proteins/immunology , Spleen/cytology
20.
Parasitol Int ; 66(3): 324-330, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28110081

ABSTRACT

Humoral and cellular immune responses play an important role during Giardia lamblia infection. Several Giardia proteins have been identified as immunogenic antigens based on their elicited humoral immune response. Poorly is known about Giardia antigens that stimulate a cellular immune response. The main purpose of this study was to isolate and partial characterize an immunogenic antigen (5G8) of G. lamblia. The 5G8 protein was isolated from G. lamblia trophozoite lysates by affinity chromatography using moAb 5G8-coupled CNBr-Sepharose. The isolated protein was analysed by electrospray tandem mass spectrometry (ESI-MS/MS), and by diverse bioinformatics tools (GiardiaDB, BLASTn, BLASTp and ExPASy). Additionally, several biochemical and immunological characteristics of the isolated protein were analysed. By ESI-MS/MS the amino acidic 5G8 sequence was deduced. The 5G8 antigen belongs to the VSP family proteins of G. lamblia. This protein is composed by one polypeptide chain (±71kDa). Using the algorithm SYFPHEITI, we identified candidate CD4+ T-cell epitopes from the 5G8 antigen, which can elicit cell-mediated immune responses. In this study, we have identified a G. lamblia protein that induces a strong immune response in infected mice. The biochemical and immunological characterization of the immunogenic 5G8 antigen may contribute to the rational design of a Giardia vaccine.


Subject(s)
Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Giardia lamblia/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/genetics , Antigens, Protozoan/isolation & purification , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/isolation & purification , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/isolation & purification , Immunity, Cellular , Immunity, Humoral , Membrane Proteins/genetics , Mice , Protozoan Proteins/administration & dosage , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Tandem Mass Spectrometry , Trophozoites/immunology
SELECTION OF CITATIONS
SEARCH DETAIL