Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 9: 935411, 2022.
Article in English | MEDLINE | ID: mdl-35959463

ABSTRACT

An increasing number of protein complex structures are determined by cryo-electron microscopy (cryo-EM). When individual protein structures have been determined and are available, an important task in structure modeling is to fit the individual structures into the density map. Here, we designed a method that fits the atomic structures of proteins in cryo-EM maps of medium to low resolutions using Markov random fields, which allows probabilistic evaluation of fitted models. The accuracy of our method, MarkovFit, performed better than existing methods on datasets of 31 simulated cryo-EM maps of resolution 10 Å , nine experimentally determined cryo-EM maps of resolution less than 4 Å , and 28 experimentally determined cryo-EM maps of resolution 6 to 20 Å .

2.
Biomimetics (Basel) ; 6(2)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34206006

ABSTRACT

Electron Microscopy Maps are key in the study of bio-molecular structures, ranging from borderline atomic level to the sub-cellular range. These maps describe the envelopes that cover possibly a very large number of proteins that form molecular machines within the cell. Within those envelopes, we are interested to find what regions correspond to specific proteins so that we can understand how they function, and design drugs that can enhance or suppress a process that they are involved in, along with other experimental purposes. A classic approach by which we can begin the exploration of map regions is to apply a segmentation algorithm. This yields a mask where each voxel in 3D space is assigned an identifier that maps it to a segment; an ideal segmentation would map each segment to one protein unit, which is rarely the case. In this work, we present a method that uses bio-inspired optimization, through an Evolutionary-Optimized Segmentation algorithm, to iteratively improve upon baseline segments obtained from a classical approach, called watershed segmentation. The cost function used by the evolutionary optimization is based on an ideal segmentation classifier trained as part of this development, which uses basic structural information available to scientists, such as the number of expected units, volume and topology. We show that a basic initial segmentation with the additional information allows our evolutionary method to find better segmentation results, compared to the baseline generated by the watershed.

3.
PLoS Comput Biol ; 14(1): e1005937, 2018 01.
Article in English | MEDLINE | ID: mdl-29329283

ABSTRACT

Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be an indispensable approach for studying protein complexes.


Subject(s)
Computational Biology/methods , Protein Interaction Mapping/methods , Proteins/chemistry , Algorithms , Cholera Toxin/chemistry , Databases, Protein , Helicobacter pylori/metabolism , Humans , Models, Statistical , Molecular Docking Simulation , Protein Binding , Protein Domains , Software , Thermodynamics
4.
Proteins ; 85(3): 513-527, 2017 03.
Article in English | MEDLINE | ID: mdl-27654025

ABSTRACT

We report the performance of protein-protein docking predictions by our group for recent rounds of the Critical Assessment of Prediction of Interactions (CAPRI), a community-wide assessment of state-of-the-art docking methods. Our prediction procedure uses a protein-protein docking program named LZerD developed in our group. LZerD represents a protein surface with 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function. The appropriate soft representation of protein surface with 3DZD makes the method more tolerant to conformational change of proteins upon docking, which adds an advantage for unbound docking. Docking was guided by interface residue prediction performed with BindML and cons-PPISP as well as literature information when available. The generated docking models were ranked by a combination of scoring functions, including PRESCO, which evaluates the native-likeness of residues' spatial environments in structure models. First, we discuss the overall performance of our group in the CAPRI prediction rounds and investigate the reasons for unsuccessful cases. Then, we examine the performance of several knowledge-based scoring functions and their combinations for ranking docking models. It was found that the quality of a pool of docking models generated by LZerD, that is whether or not the pool includes near-native models, can be predicted by the correlation of multiple scores. Although the current analysis used docking models generated by LZerD, findings on scoring functions are expected to be universally applicable to other docking methods. Proteins 2017; 85:513-527. © 2016 Wiley Periodicals, Inc.


Subject(s)
Algorithms , Computational Biology/methods , Molecular Docking Simulation/methods , Proteins/chemistry , Software , Water/chemistry , Amino Acid Motifs , Benchmarking , Binding Sites , Humans , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Research Design , Structural Homology, Protein , Thermodynamics
5.
J Comput Chem ; 37(20): 1861-5, 2016 07.
Article in English | MEDLINE | ID: mdl-27232548

ABSTRACT

Crystallization of protein-protein complexes can often be problematic and therefore computational structural models are often relied on. Such models are often generated using protein-protein docking algorithms, where one of the main challenges is selecting which of several thousand potential predictions represents the most near-native complex. We have developed a novel technique that involves the use of steered molecular dynamics (sMD) and umbrella sampling to identify near-native complexes among protein-protein docking predictions. Using this technique, we have found a strong correlation between our predictions and the interface RMSD (iRMSD) in ten diverse test systems. On two of the systems, we investigated if the prediction results could be further improved using potential of mean force calculations. We demonstrated that a near-native (<2.0 Å iRMSD) structure could be identified in the top-1 ranked position for both systems. © 2016 Wiley Periodicals, Inc.


Subject(s)
Models, Chemical , Molecular Dynamics Simulation , Protein Binding , Proteins/chemistry , Molecular Docking Simulation , Proteins/metabolism
6.
J Biol Chem ; 290(38): 23320-35, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26183897

ABSTRACT

Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Carboxylic Ester Hydrolases/chemistry , Enzyme Inhibitors/chemistry , Hypocotyl/chemistry , Multiprotein Complexes/chemistry , Pectins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Enzyme Inhibitors/metabolism , Hydrogen-Ion Concentration , Hypocotyl/genetics , Hypocotyl/metabolism , Molecular Docking Simulation , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Pectins/genetics , Pectins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
7.
BMC Bioinformatics ; 16: 181, 2015 May 30.
Article in English | MEDLINE | ID: mdl-26025554

ABSTRACT

BACKGROUND: The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. RESULTS: We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. CONCLUSIONS: We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.


Subject(s)
Computational Biology , Databases, Protein , Internet , Microscopy, Electron/methods , Proteins/chemistry , Software , Humans , Imaging, Three-Dimensional , Models, Molecular
8.
Methods Mol Biol ; 1137: 105-17, 2014.
Article in English | MEDLINE | ID: mdl-24573477

ABSTRACT

The increasing number of uncharacterized protein structures necessitates the development of computational approaches for function annotation using the protein tertiary structures. Protein structure database search is the basis of any structure-based functional elucidation of proteins. 3D-SURFER is a web platform for real-time protein surface comparison of a given protein structure against the entire PDB using 3D Zernike descriptors. It can smoothly navigate the protein structure space in real-time from one query structure to another. A major new feature of Release 2.0 is the ability to compare the protein surface of a single chain, a single domain, or a single complex against databases of protein chains, domains, complexes, or a combination of all three in the latest PDB. Additionally, two types of protein structures can now be compared: all-atom-surface and backbone-atom-surface. The server can also accept a batch job for a large number of database searches. Pockets in protein surfaces can be identified by VisGrid and LIGSITE (csc) . The server is available at http://kiharalab.org/3d-surfer/.


Subject(s)
Models, Molecular , Protein Conformation , Proteins/chemistry , Software , Web Browser , Databases, Protein
9.
Methods Mol Biol ; 1137: 209-34, 2014.
Article in English | MEDLINE | ID: mdl-24573484

ABSTRACT

Physical interactions between proteins are involved in many important cell functions and are key for understanding the mechanisms of biological processes. Protein-protein docking programs provide a means to computationally construct three-dimensional (3D) models of a protein complex structure from its component protein units. A protein docking program takes two or more individual 3D protein structures, which are either experimentally solved or computationally modeled, and outputs a series of probable complex structures.In this chapter we present the LZerD protein docking suite, which includes programs for pairwise docking, LZerD and PI-LZerD, and multiple protein docking, Multi-LZerD, developed by our group. PI-LZerD takes protein docking interface residues as additional input information. The methods use a combination of shape-based protein surface features as well as physics-based scoring terms to generate protein complex models. The programs are provided as stand-alone programs and can be downloaded from http://kiharalab.org/proteindocking.


Subject(s)
Molecular Docking Simulation , Multiprotein Complexes/chemistry , Protein Conformation , Proteins/chemistry , Software , Computational Biology/methods , Internet , Protein Binding
10.
Proteins ; 81(11): 1980-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23843247

ABSTRACT

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies.


Subject(s)
Databases, Protein , Protein Interaction Mapping , Algorithms , Mutation , Protein Binding
11.
J Struct Biol ; 184(1): 93-102, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23796504

ABSTRACT

Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.


Subject(s)
Proteins/chemistry , Computers, Molecular , Cryoelectron Microscopy/methods , Imaging, Three-Dimensional/methods , Models, Molecular , Protein Conformation
12.
BMC Proc ; 6 Suppl 7: S4, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23173833

ABSTRACT

BACKGROUND: Macromolecular protein complexes play important roles in a cell and their tertiary structure can help understand key biological processes of their functions. Multiple protein docking is a valuable computational tool for providing structure information of multimeric protein complexes. In a previous study we developed and implemented an algorithm for this purpose, named Multi-LZerD. This method represents a conformation of a multimeric protein complex as a graph, where nodes denote subunits and each edge connecting nodes denotes a pairwise docking conformation of the two subunits. Multi-LZerD employs a genetic algorithm to sample different topologies of the graph and pairwise transformations between subunits, seeking for the conformation of the optimal (lowest) energy. In this study we explore different configurations of the genetic algorithm, namely, the population size, whether to include a crossover operation, as well as the threshold for structural clustering, to find the optimal experimental setup. METHODS: Multi-LZerD was executed to predict the structures of three multimeric protein complexes, using different population sizes, clustering thresholds, and configurations of mutation and crossover. We analyzed the impact of varying these parameters on the computational time and the prediction accuracy. RESULTS AND CONCLUSIONS: Given that computational resources is a key for handling complexes with a large number of subunits and also for computing a large number of protein complexes in a genome-scale study, finding a proper setting for sampling the conformation space is of the utmost importance. Our results show that an excessive sampling of the conformational space by increasing the population size or by introducing the crossover operation is not necessary for improving accuracy for predicting structures of small complexes. The clustering is effective in reducing redundant pairwise predictions, which leads to successful identification of near-native conformations.

13.
BMC Bioinformatics ; 13 Suppl 2: S6, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22536869

ABSTRACT

BACKGROUND: Many functionally important proteins in a cell form complexes with multiple chains. Therefore, computational prediction of multiple protein complexes is an important task in bioinformatics. In the development of multiple protein docking methods, it is important to establish a metric for evaluating prediction results in a reasonable and practical fashion. However, since there are only few works done in developing methods for multiple protein docking, there is no study that investigates how accurate structural models of multiple protein complexes should be to allow scientists to gain biological insights. METHODS: We generated a series of predicted models (decoys) of various accuracies by our multiple protein docking pipeline, Multi-LZerD, for three multi-chain complexes with 3, 4, and 6 chains. We analyzed the decoys in terms of the number of correctly predicted pair conformations in the decoys. RESULTS AND CONCLUSION: We found that pairs of chains with the correct mutual orientation exist even in the decoys with a large overall root mean square deviation (RMSD) to the native. Therefore, in addition to a global structure similarity measure, such as the global RMSD, the quality of models for multiple chain complexes can be better evaluated by using the local measurement, the number of chain pairs with correct mutual orientation. We termed the fraction of correctly predicted pairs (RMSD at the interface of less than 4.0Å) as fpair and propose to use it for evaluation of the accuracy of multiple protein docking.


Subject(s)
Molecular Docking Simulation/methods , Multiprotein Complexes/chemistry , Protein Subunits/chemistry , Computational Biology/methods , Humans , Models, Molecular , Protein Conformation
14.
Proteins ; 80(7): 1818-33, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22488467

ABSTRACT

The tertiary structures of protein complexes provide a crucial insight about the molecular mechanisms that regulate their functions and assembly. However, solving protein complex structures by experimental methods is often more difficult than single protein structures. Here, we have developed a novel computational multiple protein docking algorithm, Multi-LZerD, that builds models of multimeric complexes by effectively reusing pairwise docking predictions of component proteins. A genetic algorithm is applied to explore the conformational space followed by a structure refinement procedure. Benchmark on eleven hetero-multimeric complexes resulted in near-native conformations for all but one of them (a root mean square deviation smaller than 2.5Å). We also show that our method copes with unbound docking cases well, outperforming the methodology that can be directly compared with our approach. Multi-LZerD was able to predict near-native structures for multimeric complexes of various topologies.


Subject(s)
Computational Biology/methods , Models, Chemical , Protein Interaction Mapping/methods , Proteins/chemistry , Algorithms , Cluster Analysis , Models, Molecular , Models, Statistical , Protein Binding , Protein Conformation , Proteins/metabolism
15.
J Phys Chem B ; 116(23): 6854-61, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22417139

ABSTRACT

A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.


Subject(s)
Computational Biology , Protein Interaction Mapping , Proteins/chemistry , Software , Microscopy, Electron , Models, Molecular , Protein Conformation
16.
Curr Protein Pept Sci ; 12(6): 520-30, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21787306

ABSTRACT

The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be developed for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike descriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database screening. In this article, we review various applications of the 3DZD, which have been recently proposed.


Subject(s)
Algorithms , Computational Biology/methods , Protein Conformation , Proteins/chemistry , Binding Sites , Databases, Protein , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Proteins/metabolism , Reproducibility of Results , Surface Properties
17.
Bioinformatics ; 25(21): 2843-4, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19759195

ABSTRACT

SUMMARY: We present 3D-SURFER, a web-based tool designed to facilitate high-throughput comparison and characterization of proteins based on their surface shape. As each protein is effectively represented by a vector of 3D Zernike descriptors, comparison times for a query protein against the entire PDB take, on an average, only a couple of seconds. The web interface has been designed to be as interactive as possible with displays showing animated protein rotations, CATH codes and structural alignments using the CE program. In addition, geometrically interesting local features of the protein surface, such as pockets that often correspond to ligand binding sites as well as protrusions and flat regions can also be identified and visualized. AVAILABILITY: 3D-SURFER is a web application that can be freely accessed from: http://dragon.bio.purdue.edu/3d-surfer CONTACT: dkihara@purdue.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Software , Binding Sites , Databases, Protein , Protein Conformation , Proteins/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...