Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Acta Oncol ; 63: 213-219, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38647024

BACKGROUND: Immune checkpoint inhibitors (ICIs) have significantly improved outcomes in various cancers. ICI treatment is associated with the incidence of immune-related adverse events (irAEs) which can affect any organ. Data on irAEs occurrence in relation to sex- differentiation and their association with gender-specific factors are limited. AIMS: The primary objective of the G-DEFINER study is to compare the irAEs incidence in female and male patients who undergo ICI treatment. Secondary objectives are: to compare the irAEs incidence in pre- and postmenopausal female patients; to compare the irAEs incidence in female and male patients according to different clinical and gender-related factors (lifestyle, psychosocial, and behavioral factors). Exploratory objectives of the study are to compare and contrast hormonal, gene-expression, SNPs, cytokines, and gut microbiota profiles in relation to irAEs incidence in female and male patients. METHODS AND RESULTS: The patients are recruited from Fondazione IRCCS Istituto Nazionale dei Tumori, Italy, St Vincent's University Hospital, Ireland, Oslo University Hospital, Norway, and Karolinska Insitutet/Karolinska University Hospital, Sweden. The inclusion of patients was delayed due to the Covid pandemic, leading to a total of 250 patients recruited versus a planned number of 400 patients. Clinical and translational data will be analyzed. INTERPRETATION: The expected outcomes are to improve the management of cancer patients treated with ICIs, leading to more personalized clinical approaches that consider potential toxicity profiles. The real world nature of the trial makes it highly applicable for timely irAEs diagnosis.


Immune Checkpoint Inhibitors , Neoplasms , Humans , Female , Male , Neoplasms/drug therapy , Prospective Studies , Immune Checkpoint Inhibitors/adverse effects , Sex Factors , Incidence , Immunotherapy/adverse effects , Immunotherapy/methods , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/diagnosis , Observational Studies as Topic
2.
Chemistry ; 30(19): e202303982, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38205882

Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.


Antineoplastic Agents , Nanoparticles , Quantum Dots , Drug Delivery Systems/methods , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Doxorubicin , Drug Carriers , Quantum Dots/chemistry
3.
J Transl Med ; 18(1): 99, 2020 02 22.
Article En | MEDLINE | ID: mdl-32087721

BACKGROUND: An increasing number of anti-cancer therapeutic agents target specific mutant proteins that are expressed by many different tumor types. Successful use of these therapies is dependent on the presence or absence of somatic mutations within the patient's tumor that can confer clinical efficacy or drug resistance. METHODS: The aim of our study was to determine the type, frequency, overlap and functional proteomic effects of potentially targetable recurrent somatic hotspot mutations in 47 cancer-related genes in multiple disease sites that could be potential therapeutic targets using currently available agents or agents in clinical development. RESULTS: Using MassArray technology, of the 1300 patient tumors analysed 571 (43.9%) had at least one somatic mutation. Mutations were identified in 30 different genes. KRAS (16.5%), PIK3CA (13.6%) and BRAF (3.8%) were the most frequently mutated genes. Prostate (10.8%) had the lowest number of somatic mutations identified, while no mutations were identified in sarcoma. Ocular melanoma (90.6%), endometrial (72.4%) and colorectal (66.4%) tumors had the highest number of mutations. We noted high concordance between mutations in different parts of the tumor (94%) and matched primary and metastatic samples (90%). KRAS and BRAF mutations were mutually exclusive. Mutation co-occurrence involved mainly PIK3CA and PTPN11, and PTPN11 and APC. Reverse Phase Protein Array (RPPA) analysis demonstrated that PI3K and MAPK signalling pathways were more altered in tumors with mutations compared to wild type tumors. CONCLUSIONS: Hotspot mutational profiling is a sensitive, high-throughput approach for identifying mutations of clinical relevance to molecular based therapeutics for treatment of cancer, and could potentially be of use in identifying novel opportunities for genotype-driven clinical trials.


Antineoplastic Agents , Colorectal Neoplasms , Antineoplastic Agents/therapeutic use , Class I Phosphatidylinositol 3-Kinases , Colorectal Neoplasms/genetics , Humans , Male , Mutation/genetics , Oncogenes/genetics , Proteomics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction
4.
Breast Cancer Res ; 19(1): 87, 2017 Jul 27.
Article En | MEDLINE | ID: mdl-28750640

BACKGROUND: The Cancer Genome Atlas analysis revealed that somatic EGFR, receptor tyrosine-protein kinase erbB-2 (ERBB2), Erb-B2 receptor tyrosine kinase 3 (ERBB3) and Erb-B2 receptor tyrosine kinase 4 (ERBB4) gene mutations (ERBB family mutations) occur alone or co-occur with somatic mutations in the gene encoding the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (PIK3CA) in 19% of human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Because ERBB family mutations can activate the PI3K/AKT pathway and likely have similar canonical signalling effects to PI3K pathway mutations, we investigated their combined impact on response to neoadjuvant HER2-targeted therapies. METHODS: Baseline tumour biopsies were available from 74 patients with HER2-positive breast cancer who were enrolled in the phase II TCHL neoadjuvant study (ICORG 10-05) assessing TCH (docetaxel, carboplatin, trastuzumab) (n = 38) versus TCL (docetaxel, carboplatin, lapatinib) (n = 10) versus TCHL (docetaxel, carboplatin, trastuzumab, lapatinib) (n = 40), each for six cycles. Activating mutations in PIK3CA and ERBB family genes were identified using mass spectrometry-based genotyping. Phosphatase and tensin homolog (PTEN) expression was assessed by immunohistochemistry. RESULTS: PIK3CA and/or ERBB family mutations were detected in 23 (31.1%) tumour samples tested, whereas PTEN expression was low in 31.1% of cases tested. Mutation frequency was similar in each treatment arm (31.3% in TCH arm, 30% in TCL arm and 31.3% in TCHL arm) and was not influenced by oestrogen receptor (ER) status (27.6% in ER-negative patients, 33.3% in ER-positive patients) or progesterone receptor (PR) status (32.6% in PR-negative patients, 29% in PR-positive patients). There was no significant difference in pathological complete response (pCR) rates between 47 patients with wild-type (WT) tumours and 22 patients whose tumours carried mutations (in either PIK3CA or ERBB family genes) (42.5% vs. 54.5%; p = 0.439). Similarly, there was no significant difference in pCR rates between patients with PIK3CA/ERBB family mutated/PTEN-low (i.e., PI3K-activated) tumours and patients without PI3K activation (50% vs. 44%; p = 0.769). However, in the TCHL (but not the TCH) group, the pCR rate was higher for 9 patients with PIK3CA/ERBB family mutated tumours than for 20 patients with PIK3CA/ERBB family WT tumours (77.8% vs. 35%; p = 0.05). CONCLUSIONS: Our results indicate that patients who receive neoadjuvant TCHL and have PIK3CA/ERBB family mutated tumours may be more likely to have a pCR than patients with WT tumours. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01485926 . Registered on 2 December 2011.


Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , PTEN Phosphohydrolase/genetics , Receptor, ErbB-2/genetics , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carboplatin/administration & dosage , Docetaxel , Female , Gene Expression Regulation, Neoplastic/genetics , Genotype , Humans , Lapatinib , Middle Aged , Mutation , Neoadjuvant Therapy , Quinazolines/administration & dosage , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction/drug effects , Taxoids/administration & dosage , Trastuzumab/administration & dosage
...